2024-2025學(xué)年安徽省亳州市利辛縣八年級(jí)(上)期末數(shù)學(xué)試卷 (含答案)_第1頁
2024-2025學(xué)年安徽省亳州市利辛縣八年級(jí)(上)期末數(shù)學(xué)試卷 (含答案)_第2頁
2024-2025學(xué)年安徽省亳州市利辛縣八年級(jí)(上)期末數(shù)學(xué)試卷 (含答案)_第3頁
2024-2025學(xué)年安徽省亳州市利辛縣八年級(jí)(上)期末數(shù)學(xué)試卷 (含答案)_第4頁
2024-2025學(xué)年安徽省亳州市利辛縣八年級(jí)(上)期末數(shù)學(xué)試卷 (含答案)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024-2025學(xué)年安徽省亳州市利辛縣八年級(jí)(上)期末數(shù)學(xué)試卷一、選擇題(本大題共10小題,每小題4分,共40分)1.(4分)在平面直角坐標(biāo)系中,點(diǎn)(3,﹣2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(4分)下列2024年巴黎奧運(yùn)會(huì)項(xiàng)目圖標(biāo)中,軸對(duì)稱圖形是()A. B. C. D.3.(4分)如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于點(diǎn)E,∠BAC=55°,∠ABE=25°,則∠CAD的度數(shù)是()A.15° B.20° C.25° D.30°4.(4分)小明在游樂場坐過山車,在某一段60秒時(shí)間內(nèi)過山車的高度h(米)與時(shí)間t(秒)之間的函數(shù)關(guān)系圖象如圖所示,下列結(jié)論錯(cuò)誤的是()A.當(dāng)t=41時(shí),h=15 B.過山車距水平地面的最高高度為98米 C.在0≤t≤60范圍內(nèi),當(dāng)過山車高度是80米時(shí),t的值只能等于30 D.當(dāng)41≤t≤53時(shí),高度h(米)隨時(shí)間t(秒)的增大而增大5.(4分)兩個(gè)完全一樣的三角板如圖擺放,使三角板的一條直角邊分別與△ABC的邊AB、AC重合,它們的頂點(diǎn)重合于點(diǎn)M,則點(diǎn)M一定在()A.∠A的平分線上 B.AC邊的高上 C.BC邊的中垂線上 D.AB邊的中線上6.(4分)如圖,△ABC≌△ADE,∠CAE=90°,AB=2,則圖中陰影部分的面積為()A.2 B.3 C.4 D.無法確定7.(4分)一次函數(shù)y=mx+n與正比例函數(shù)y=mnx(mn≠0)在同一坐標(biāo)系中的圖象可能是()A. B. C. D.8.(4分)如圖,在△ABC中,AB=AC,∠BAC=120°,過點(diǎn)A作AB的垂線交BC于D,BD=4,則CD的長為()A.1 B.2 C.2.5 D.39.(4分)人工智能的發(fā)展使得智能機(jī)器人送餐成為時(shí)尚.如圖,某餐廳的機(jī)器人小數(shù)和小文從廚房門口出發(fā),準(zhǔn)備給相距450cm的客人送餐,小數(shù)比小文先出發(fā),且速度保持不變,小文出發(fā)一段時(shí)間后將速度提高到原來的2倍.設(shè)小數(shù)行走的時(shí)間為x(s),小數(shù)和小文行走的路程分別為y1(cm),y2(cm),y1,y2與x之間的函數(shù)圖象如圖所示,則下列說法不正確的是()A.小數(shù)比小文先出發(fā)15秒 B.小文提速后的速度為30cm/s C.n=40 D.從小數(shù)出發(fā)至送餐結(jié)束,小文和小數(shù)最遠(yuǎn)相距150cm10.(4分)如圖所示框架PABQ,其中AB=21cm,AP,BQ足夠長,PA⊥AB于點(diǎn)B,點(diǎn)M從B出發(fā)向A運(yùn)動(dòng),同時(shí)點(diǎn)N從B出發(fā)向Q運(yùn)動(dòng),點(diǎn)M,N運(yùn)動(dòng)的速度之比為3:4,當(dāng)兩點(diǎn)運(yùn)動(dòng)到某一瞬間同時(shí)停止,此時(shí)在射線AP上取點(diǎn)C,使△ACM與△BMN全等,則線段AC的長為()cm.A.18或28 B.9 C.9或14 D.18二、填空題(本大題共4小題,每小題5分,共20分)11.(5分)某風(fēng)景區(qū)集體門票的收費(fèi)標(biāo)準(zhǔn)是25人以內(nèi)(含25人),每人10元,超過25人的,超過的部分每人5元.當(dāng)人數(shù)超過25人時(shí),請(qǐng)寫出此時(shí)應(yīng)收門票費(fèi)用y(元)與人數(shù)x(人)之間的函數(shù)關(guān)系式.12.(5分)如圖,已知函數(shù)y=ax+b與函數(shù)y=kx﹣3的圖象交于點(diǎn)P(4,﹣6),則不等式ax+b≤kx﹣3的解集是.13.(5分)如圖,OE、OF分別是AC、BD的垂直平分線,垂足分別為E、F,且AB=CD,∠ABD=116°,∠CDB=28°,則∠OBD=°.14.(5分)如圖,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=6,D是線段AB上一個(gè)動(dòng)點(diǎn),以BD為邊在△ABC外作等邊△BDE.若F是DE的中點(diǎn),連接BF,(1)∠FBC=°;(2)當(dāng)CF取最小值時(shí),△BDE的周長為.三、(本大題共2小題,每小題8分,共16分)15.(8分)已知點(diǎn)P(2m+4,m﹣1),請(qǐng)分別根據(jù)下列條件,求出點(diǎn)P的坐標(biāo).(1)點(diǎn)Q的坐標(biāo)是(2,﹣3),PQ∥y軸;(2)點(diǎn)P在第一、三象限的角平分線上.16.(8分)如圖,△ABC的頂點(diǎn)A(﹣1,4),B(﹣4,﹣1),C(1,1).若△ABC向右平移4個(gè)單位長度,再向下平移3個(gè)單位長度得到△A'B'C',且點(diǎn)C的對(duì)應(yīng)點(diǎn)坐標(biāo)是C'.(1)畫出△A'B'C',并直接寫出點(diǎn)C′的坐標(biāo);(2)△ABC內(nèi)有一點(diǎn)P(a,b)經(jīng)過以上平移后的對(duì)應(yīng)點(diǎn)為P',直接寫出點(diǎn)P'的坐標(biāo).四、(本大題共2小題,每小題8分,共16分)17.(8分)如圖,在△ABC中,BD是AC邊上的高,∠A=72°,CE平分∠ACB交BD于點(diǎn)E,∠BEC=115°,求∠ABC的度數(shù).18.(8分)如圖,在△ABC和△DEB中,點(diǎn)D在邊AB上,下面有四個(gè)條件:①BD=CA,②DE=AB,③DE∥AC,④∠ABC=∠E.(1)從中選三個(gè)作為題設(shè),余下的一個(gè)作為結(jié)論,組成一個(gè)真命題,請(qǐng)?zhí)钚蛱?hào):已知:,求證:;(2)請(qǐng)對(duì)你寫出的命題進(jìn)行證明.五、(本題10分)19.(10分)如圖,在△ABC中,AB=AC,AB>BC,點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E,F(xiàn)在線段AD上,∠1=∠2=∠BAC.(1)求證:AF=BE;(2)若△BDE的面積為1.4,△ABC的面積為18,求△CFD的面積.六、(本題10分)20.(10分)在△ABC中,AB>AC,點(diǎn)E在BC邊上,連接AE,將△AEC沿AE翻折使得點(diǎn)D落在AB邊上得△AED,連接DC.(1)如圖1,若∠BAC=52°,∠ACB=90°,則∠BCD=°;(2)如圖2,若AB=BC,BD=DE,求∠BCD的度數(shù).七、(本題12分)21.(12分)《九章算術(shù)》中記載,浮箭漏(如圖①)出現(xiàn)于漢武帝時(shí)期,它由供水壺和箭壺組成,箭壺內(nèi)裝有箭尺,水勻速地從供水壺流到箭壺,箭壺中的水位逐漸上升,箭尺勻速上浮,可通過讀取箭尺讀數(shù)計(jì)算時(shí)間.某學(xué)校科技研究小組仿制了一套浮箭漏,并從函數(shù)角度進(jìn)行了如下實(shí)驗(yàn)探究.研究小組每2h記錄一次箭尺讀數(shù)(箭尺最大讀數(shù)為120cm),得到如表:供水時(shí)間x(h)02468箭尺讀數(shù)y(cm)618304254(1)如圖②,建立平面直角坐標(biāo)系,橫軸表示供水時(shí)間x(h),縱軸表示箭尺讀數(shù)y(cm),描出以表格中數(shù)據(jù)為坐標(biāo)的各點(diǎn),并連線;(2)觀察描出各點(diǎn)的分布規(guī)律,可以知道它是我們學(xué)過的函數(shù),請(qǐng)結(jié)合表格數(shù)據(jù),求出該函數(shù)解析式;(3)應(yīng)用上述得到的規(guī)律計(jì)算:如果本次實(shí)驗(yàn)記錄的開始時(shí)間是上午9:00,那么當(dāng)箭尺讀數(shù)為81cm時(shí)是什么時(shí)候?八、(本題12分)22.(12分)一次函數(shù)y1=ax+b(a≠0)恒過定點(diǎn)(1,0).(1)若一次函數(shù)y1=ax+b還經(jīng)過(2,3)點(diǎn),求y1的表達(dá)式;(2)若有另一個(gè)一次函數(shù)y2=bx+a.①點(diǎn)A(m,p)和點(diǎn)B(n,p)分別在一次函數(shù)y1和y2的圖象上,求證:m+n=2;②設(shè)函數(shù)y=y(tǒng)1﹣y2,當(dāng)﹣2≤x≤4時(shí),函數(shù)y有最大值6,求a的值.九、(本題14分)23.(14分)如圖1,已知A,B為直線MN同側(cè)的兩點(diǎn),連接AP,BP,若∠APM=∠BPN,則稱點(diǎn)P為點(diǎn)A,B關(guān)于直線MN的“等角點(diǎn)”.(1)如圖2,在△ABC中,D為BC上一點(diǎn),點(diǎn)D、E關(guān)于直線AB對(duì)稱,連接EB并延長至點(diǎn)F,判斷點(diǎn)B是否為點(diǎn)D、F關(guān)于直線AB的“等角點(diǎn)”,并說明理由;(2)如圖2,在射線EF上求作一點(diǎn)Q,使得點(diǎn)C為點(diǎn)B、Q關(guān)于直線AN的“等角點(diǎn)”;(3)如圖3,在△ABC中,∠ABC,∠BAC的平分線交于點(diǎn)O,點(diǎn)O到AC的距離為2,直線l垂直平分邊BC,點(diǎn)P為點(diǎn)O,B關(guān)于直線l的“等角點(diǎn)”,連接OP,BP,當(dāng)∠ACB=60°時(shí),直接寫出OP+BP的值.

2024-2025學(xué)年安徽省亳州市利辛縣八年級(jí)(上)期末數(shù)學(xué)試卷參考答案與試題解析題號(hào)12345678910答案DBACAADBCC一、選擇題(本大題共10小題,每小題4分,共40分)1.(4分)在平面直角坐標(biāo)系中,點(diǎn)(3,﹣2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【解答】解:點(diǎn)(3,﹣2)所在象限是第四象限.故選:D.2.(4分)下列2024年巴黎奧運(yùn)會(huì)項(xiàng)目圖標(biāo)中,軸對(duì)稱圖形是()A. B. C. D.【解答】解:A,C,D選項(xiàng)中的圖標(biāo)都不能找到一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對(duì)稱圖形;B選項(xiàng)中的圖標(biāo)能找到一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對(duì)稱圖形.故選:B.3.(4分)如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于點(diǎn)E,∠BAC=55°,∠ABE=25°,則∠CAD的度數(shù)是()A.15° B.20° C.25° D.30°【解答】解:∵BE平分∠ABC交AC邊于點(diǎn)E,∠ABE=25°,∴∠ABD=2∠ABE=50°,∵AD是BC邊上的高,∴∠ADB=90°,∴∠ABD+∠BAD=90°,∴∠BAD=40°,∴∠CAD=∠BAC﹣∠BAD=55°﹣40°=15°,故選:A.4.(4分)小明在游樂場坐過山車,在某一段60秒時(shí)間內(nèi)過山車的高度h(米)與時(shí)間t(秒)之間的函數(shù)關(guān)系圖象如圖所示,下列結(jié)論錯(cuò)誤的是()A.當(dāng)t=41時(shí),h=15 B.過山車距水平地面的最高高度為98米 C.在0≤t≤60范圍內(nèi),當(dāng)過山車高度是80米時(shí),t的值只能等于30 D.當(dāng)41≤t≤53時(shí),高度h(米)隨時(shí)間t(秒)的增大而增大【解答】解:A.由圖象可知,當(dāng)t=41秒時(shí),h的值是15米,故本選項(xiàng)不合題意;B.由圖象可知,過山車距水平地面的最高高度為98米,故本選項(xiàng)不合題意;C.由圖象可知,在0≤t≤60范圍內(nèi),當(dāng)過山車高度是80米時(shí),t的值有3個(gè),原說法錯(cuò)誤,故本選項(xiàng)符合題意;D.由圖象可知,當(dāng)41<t≤53時(shí),高度h(米)隨時(shí)間t(秒)的增大而增大;故本選項(xiàng)不合題意;故選:C.5.(4分)兩個(gè)完全一樣的三角板如圖擺放,使三角板的一條直角邊分別與△ABC的邊AB、AC重合,它們的頂點(diǎn)重合于點(diǎn)M,則點(diǎn)M一定在()A.∠A的平分線上 B.AC邊的高上 C.BC邊的中垂線上 D.AB邊的中線上【解答】解:如圖:∵M(jìn)E⊥AB,MF⊥AC,ME=MF,∴M在∠A的角平分線上,故選:A.6.(4分)如圖,△ABC≌△ADE,∠CAE=90°,AB=2,則圖中陰影部分的面積為()A.2 B.3 C.4 D.無法確定【解答】解:∵△ABC≌△ADE,AB=2,∴S△ABC=S△ADE,AB=AD=2,∠BAC=∠DAE,∵∠CAE=90°,∴∠BAD=∠CAE=90°,∴S陰影=S故選:A.7.(4分)一次函數(shù)y=mx+n與正比例函數(shù)y=mnx(mn≠0)在同一坐標(biāo)系中的圖象可能是()A. B. C. D.【解答】解:A、由一次函數(shù)圖象可知,m<0,n>0,所以mn<0,正比例函數(shù)圖象位置不符mn<0,此選項(xiàng)不符合題意;B、由一次函數(shù)圖象可知,m>0,n<0,所以mn<0,正比例函數(shù)圖象位置不符mn<0,此選項(xiàng)不符合題意;C、由一次函數(shù)圖象可知,m>0,n>0,所以mn>0,正比例函數(shù)圖象位置不符mn>0,此選項(xiàng)不符合題意;D、由一次函數(shù)圖象可知,m<0,n>0,所以mn<0,正比例函數(shù)圖象位置符合mn<0,此選項(xiàng)符合題意;故選:D.8.(4分)如圖,在△ABC中,AB=AC,∠BAC=120°,過點(diǎn)A作AB的垂線交BC于D,BD=4,則CD的長為()A.1 B.2 C.2.5 D.3【解答】解:∵AB=AC,∠BAC=120°,∴∠B=∠C=12×∵DA⊥AB,∴∠BAD=90°,∴∠DAC=∠BAC﹣∠BAD=30°,∴∠DAC=∠C,∴AD=DC,∵∠B=30°,∠BAD=90°,∴BD=2AD=4,∴AD=CD=2,∴CD=2.故選:B.9.(4分)人工智能的發(fā)展使得智能機(jī)器人送餐成為時(shí)尚.如圖,某餐廳的機(jī)器人小數(shù)和小文從廚房門口出發(fā),準(zhǔn)備給相距450cm的客人送餐,小數(shù)比小文先出發(fā),且速度保持不變,小文出發(fā)一段時(shí)間后將速度提高到原來的2倍.設(shè)小數(shù)行走的時(shí)間為x(s),小數(shù)和小文行走的路程分別為y1(cm),y2(cm),y1,y2與x之間的函數(shù)圖象如圖所示,則下列說法不正確的是()A.小數(shù)比小文先出發(fā)15秒 B.小文提速后的速度為30cm/s C.n=40 D.從小數(shù)出發(fā)至送餐結(jié)束,小文和小數(shù)最遠(yuǎn)相距150cm【解答】解:根據(jù)圖象,小數(shù)比小文先出發(fā)15秒,∴A正確,不符合題意;小文提速前的速度為30÷(17﹣15)=15(cm/s),∴小文提速后的速度為15×2=30(cm/s),∴B正確,不符合題意;∵30(m﹣17)=450﹣30,∴m=31,∴小數(shù)的速度為310÷31=10(cm/s),∴小數(shù)到達(dá)目的地所用時(shí)間為450÷10=45(s),∴n=45,∴C不正確,符合題意;小數(shù)和小文相遇前,當(dāng)x=15時(shí)小文和小數(shù)相距最遠(yuǎn),為10×15=150(cm),小數(shù)和小文相遇后,當(dāng)x=m=31時(shí)小文和小數(shù)相距最遠(yuǎn),為450﹣10×31=140(cm),∵150>140,∴從小數(shù)出發(fā)至送餐結(jié)束,小文和小數(shù)最遠(yuǎn)相距150cm,∴D正確,不符合題意.故選:C.10.(4分)如圖所示框架PABQ,其中AB=21cm,AP,BQ足夠長,PA⊥AB于點(diǎn)B,點(diǎn)M從B出發(fā)向A運(yùn)動(dòng),同時(shí)點(diǎn)N從B出發(fā)向Q運(yùn)動(dòng),點(diǎn)M,N運(yùn)動(dòng)的速度之比為3:4,當(dāng)兩點(diǎn)運(yùn)動(dòng)到某一瞬間同時(shí)停止,此時(shí)在射線AP上取點(diǎn)C,使△ACM與△BMN全等,則線段AC的長為()cm.A.18或28 B.9 C.9或14 D.18【解答】解:∵點(diǎn)M,N運(yùn)動(dòng)的速度之比為3:4,∴設(shè)BM=3tcm,則BN=4tcm,∵AB=21cm,∴AM=AB﹣BM=(21﹣3t)cm,又∵∠A=∠B=90°,∴當(dāng)△ACM與△BMN全等時(shí),有以下兩種情況:①當(dāng)BM=AC,BN=AM時(shí),則△ACM≌△BMN,由BN=AM,得:4t=21﹣3t,解得:t=3,∴AC=BM=3tcm=9cm;②當(dāng)BM=AM,BN=AC時(shí),則△ACM≌△BNM,由BM=AM,得:3t=21﹣3t,解得:t=3.5,∴AC=BN=4tcm=14cm,綜上所述,AC的長為9cm或14cm,故選:C.二、填空題(本大題共4小題,每小題5分,共20分)11.(5分)某風(fēng)景區(qū)集體門票的收費(fèi)標(biāo)準(zhǔn)是25人以內(nèi)(含25人),每人10元,超過25人的,超過的部分每人5元.當(dāng)人數(shù)超過25人時(shí),請(qǐng)寫出此時(shí)應(yīng)收門票費(fèi)用y(元)與人數(shù)x(人)之間的函數(shù)關(guān)系式y(tǒng)=5x+125(x>25).【解答】解:當(dāng)x>25時(shí),得y=10×25+5×(x﹣25)=5x+125.故答案為:y=5x+125(x>25).12.(5分)如圖,已知函數(shù)y=ax+b與函數(shù)y=kx﹣3的圖象交于點(diǎn)P(4,﹣6),則不等式ax+b≤kx﹣3的解集是x≤4.【解答】解:∵函數(shù)y=ax+b與函數(shù)y=kx﹣3的圖象交于點(diǎn)P(4,﹣6),∴不等式ax+b≤kx﹣3的解集是x≤4.故答案為x≤4.13.(5分)如圖,OE、OF分別是AC、BD的垂直平分線,垂足分別為E、F,且AB=CD,∠ABD=116°,∠CDB=28°,則∠OBD=44°.【解答】解:如圖,連接OA、OC,∵OE、OF分別是AC、BD的垂直平分線,∴OA=OC,OB=OD,∴∠OBD=∠ODB,在△AOB和△COD中,OA=OBAB=CD∴△AOB≌△COD(SSS),∴∠ABO=∠CBO,∵∠ABD=116°,∠CDB=28°,∴∠ABO+∠OBD=116°,∠CDO﹣∠ODB=28°,∴∠ABO=72°,∠OBD=44°,故答案為:44.14.(5分)如圖,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=6,D是線段AB上一個(gè)動(dòng)點(diǎn),以BD為邊在△ABC外作等邊△BDE.若F是DE的中點(diǎn),連接BF,(1)∠FBC=60°;(2)當(dāng)CF取最小值時(shí),△BDE的周長為18.【解答】解:(1)∵等邊△BDE,F(xiàn)是DE的中點(diǎn),∴∠DBE=60°,BF平分∠DBE,∴∠DBF=12∠DBE∴∠FBC=∠ABC+∠DBF=30°+30°=60°.故答案為:60;(2)∵在Rt△ABC中,∠ABC=30°,∴AB=2AC=2×6=12,∴BC=A由(1)得,∠FBC=60°恒成立,又∵當(dāng)CF取最小值,∴CF⊥BF,即∠CFB=90°,∴∠FCB=90°﹣60°=30°,∴BF=12BC=12×∵等邊△BDE,F(xiàn)是DE的中點(diǎn),∴BF⊥DE,DF=1設(shè)等邊△BDE的邊長為2x,則DF=x,在Rt△BDF中,DF2+BF2=BD2,∴x2解得x=3,∴BD=2x=6,∴△BDE的周長為3×6=18.故答案為:18.三、(本大題共2小題,每小題8分,共16分)15.(8分)已知點(diǎn)P(2m+4,m﹣1),請(qǐng)分別根據(jù)下列條件,求出點(diǎn)P的坐標(biāo).(1)點(diǎn)Q的坐標(biāo)是(2,﹣3),PQ∥y軸;(2)點(diǎn)P在第一、三象限的角平分線上.【解答】解:(1)因?yàn)辄c(diǎn)P坐標(biāo)為(2m+4,m﹣1),點(diǎn)Q坐標(biāo)為(2,﹣3),且PQ∥y軸,所以2m+4=2,解得m=﹣1,則m﹣1=﹣2,所以點(diǎn)P的坐標(biāo)為(2,﹣2).(2)因?yàn)辄c(diǎn)P在第一、三象限的角平分線上,所以2m+4=m﹣1,解得m=﹣5,則2m+4=﹣6,m﹣1=﹣6,所以點(diǎn)P的坐標(biāo)為(﹣6,﹣6).16.(8分)如圖,△ABC的頂點(diǎn)A(﹣1,4),B(﹣4,﹣1),C(1,1).若△ABC向右平移4個(gè)單位長度,再向下平移3個(gè)單位長度得到△A'B'C',且點(diǎn)C的對(duì)應(yīng)點(diǎn)坐標(biāo)是C'.(1)畫出△A'B'C',并直接寫出點(diǎn)C′的坐標(biāo);(2)△ABC內(nèi)有一點(diǎn)P(a,b)經(jīng)過以上平移后的對(duì)應(yīng)點(diǎn)為P',直接寫出點(diǎn)P'的坐標(biāo).【解答】解:(1)如圖,△A′B′C′即為所求作,C′(5,﹣2),(2)點(diǎn)P(a,b)經(jīng)過以上平移后的對(duì)應(yīng)點(diǎn)為P′,∴P′(a+4,b﹣3).四、(本大題共2小題,每小題8分,共16分)17.(8分)如圖,在△ABC中,BD是AC邊上的高,∠A=72°,CE平分∠ACB交BD于點(diǎn)E,∠BEC=115°,求∠ABC的度數(shù).【解答】解:∵BD是AC邊上的高,∴∠BDC=90°,∵∠BEC=115°,∴∠DCE=∠BEC﹣∠CDE=25°,∵CE平分∠ACB,∴∠BCD=2∠DCE=×25°=50°,∵∠A=72°,∴∠ABC=180°﹣∠A﹣∠ACB=180°﹣72°﹣50°=58°,所以∠ABC的度數(shù)為58°.18.(8分)如圖,在△ABC和△DEB中,點(diǎn)D在邊AB上,下面有四個(gè)條件:①BD=CA,②DE=AB,③DE∥AC,④∠ABC=∠E.(1)從中選三個(gè)作為題設(shè),余下的一個(gè)作為結(jié)論,組成一個(gè)真命題,請(qǐng)?zhí)钚蛱?hào):已知:①③④,求證:②(答案不唯一);(2)請(qǐng)對(duì)你寫出的命題進(jìn)行證明.【解答】解:(1)已知:①③④,求證:②.故答案為:①③④;②(答案不唯一);(2)證明如下:∵DE∥AC,∴∠A=∠EDB,在△ABC≌△DEB中,∠A=∠EDB∠ABC=∠E∴△ABC≌△DEB(AAS),∴DE=AB.五、(本題10分)19.(10分)如圖,在△ABC中,AB=AC,AB>BC,點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E,F(xiàn)在線段AD上,∠1=∠2=∠BAC.(1)求證:AF=BE;(2)若△BDE的面積為1.4,△ABC的面積為18,求△CFD的面積.【解答】(1)證明:∵∠AFC=180°﹣∠2,∠BEA=180°﹣∠1,且∠1=∠2,∴∠AFC=∠BEA,∵∠2=∠CAF+∠ACF,∠BAC=∠CAF+∠BAE,且∠2=∠BAC,∴∠CAF+∠ACF=∠CAF+∠BAE,∴∠ACF=∠BAE,在△ACF和△BAE中,∠ACF=∠BAE∠AFC=∠BEA∴△ACF≌△BAE(AAS),∴AF=BE.(2)解:由(1)得△ACF≌△BAE,∴S△ACF=S△BAE,∵CD=2BD,∴S△ACD=2S△ABD,∴S△ABD+2S△ABD=S△ABC=18,∴S△ABD=6,S△ACD=12,∵S△BDE=1.4,∴S△ACF=S△BAE=S△ABD﹣S△BDE=6﹣1.4=4.6,∴S△CFD=S△ACD﹣S△ACF=12﹣4.6=7.4,∴△CFD的面積為7.4.六、(本題10分)20.(10分)在△ABC中,AB>AC,點(diǎn)E在BC邊上,連接AE,將△AEC沿AE翻折使得點(diǎn)D落在AB邊上得△AED,連接DC.(1)如圖1,若∠BAC=52°,∠ACB=90°,則∠BCD=26°;(2)如圖2,若AB=BC,BD=DE,求∠BCD的度數(shù).【解答】解:(1)如圖1,由翻折得AD=AC,∵∠BAC=52°,∠ACB=90°,∴∠ACD=∠ADC=1∴∠BCD=∠ACB﹣∠ACD=90°﹣64°=26°,故答案為:26.(2)如圖2,設(shè)AE交CD于點(diǎn)F,∵點(diǎn)D與點(diǎn)C關(guān)于直線AE對(duì)稱,∴AE垂直平分CD,∴∠AFC=90°,∵DE=CE,∴∠BCD=∠EDC,∵BD=DE,∴∠B=∠DEB=∠BCD+∠EDC=2∠BCD,∵AB=BC,∴∠BAC=∠BCA=12(180°﹣∠B)=12(180°﹣2∠∴∠CAF=∠DAF=12∠BAC=12(90°﹣∠BCD),∠ACF=∠BCA﹣∠BCD=90°﹣∠BCD﹣∠∵∠CAF+∠ACF=90°,∴12(90°﹣∠BCD)+90°﹣2∠BCD∴∠BCD=18°,∴∠BCD的度數(shù)是18°.七、(本題12分)21.(12分)《九章算術(shù)》中記載,浮箭漏(如圖①)出現(xiàn)于漢武帝時(shí)期,它由供水壺和箭壺組成,箭壺內(nèi)裝有箭尺,水勻速地從供水壺流到箭壺,箭壺中的水位逐漸上升,箭尺勻速上浮,可通過讀取箭尺讀數(shù)計(jì)算時(shí)間.某學(xué)校科技研究小組仿制了一套浮箭漏,并從函數(shù)角度進(jìn)行了如下實(shí)驗(yàn)探究.研究小組每2h記錄一次箭尺讀數(shù)(箭尺最大讀數(shù)為120cm),得到如表:供水時(shí)間x(h)02468箭尺讀數(shù)y(cm)618304254(1)如圖②,建立平面直角坐標(biāo)系,橫軸表示供水時(shí)間x(h),縱軸表示箭尺讀數(shù)y(cm),描出以表格中數(shù)據(jù)為坐標(biāo)的各點(diǎn),并連線;(2)觀察描出各點(diǎn)的分布規(guī)律,可以知道它是我們學(xué)過的一次函數(shù),請(qǐng)結(jié)合表格數(shù)據(jù),求出該函數(shù)解析式;(3)應(yīng)用上述得到的規(guī)律計(jì)算:如果本次實(shí)驗(yàn)記錄的開始時(shí)間是上午9:00,那么當(dāng)箭尺讀數(shù)為81cm時(shí)是什么時(shí)候?【解答】解:(1)描點(diǎn)并連線如圖所示:(2)觀察描出各點(diǎn)的分布規(guī)律,可以知道它是我們學(xué)過的一次函數(shù).故答案為:一次.設(shè)y與x之間的函數(shù)解析式為y=kx+b(k、b為常數(shù),且k≠0).將x=0,y=6和x=2,y=18分別代入y=kx+b,得b=62k+b=18解得k=6b=6∴y與x之間的函數(shù)解析式為y=6x+6.(3)當(dāng)y=81時(shí),得6x+6=81,解得x=12.5,上午9:00經(jīng)過12.5小時(shí)是21:30,即下午9:30.答:當(dāng)箭尺讀數(shù)為81cm時(shí)是下午9:30.八、(本題12分)22.(12分)一次函數(shù)y1=ax+b(a≠0)恒過定點(diǎn)(1,0).(1)若一次函數(shù)y1=ax+b還經(jīng)過(2,3)點(diǎn),求y1的表達(dá)式;(2)若有另一個(gè)一次函數(shù)y2=bx+a.①點(diǎn)A(m,p)和點(diǎn)B(n,p)分別在一次函數(shù)y1和y2的圖象上,求證:m+n=2;②設(shè)函數(shù)y=y(tǒng)1﹣y2,當(dāng)﹣2≤x≤4時(shí),函數(shù)y有最大值6,求a的值.【解答】(1)解:∵一次函數(shù)y1=ax+b經(jīng)過點(diǎn)(1,0)和點(diǎn)(2,3),∴a+b=0,2a+b=3,解得:a=3,b=﹣3,∴y1的表達(dá)式為:y1=3x﹣3;(2)①證明:∵一次函數(shù)y1=ax+b(a≠0)恒過定點(diǎn)(1,0),∴a+b=0,∴b=﹣a,∴y1的表達(dá)式為:y1=ax﹣a,∵y2=bx+a,∴y2=﹣ax+a,∵點(diǎn)A(m,p)在一次函數(shù)y1=ax﹣a的圖象上,∴p=ma﹣a,∵點(diǎn)B(n,p)在一次函數(shù)y2=﹣ax+a的圖象上,∴p=﹣na+a,∴ma﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論