版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省南通市通州區(qū)西亭高級中學(xué)2025年高考猜題卷(一)數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側(cè)面積是()A.16 B.12 C.8 D.62.已知復(fù)數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第三象限C.的共軛復(fù)數(shù) D.3.定義在上的函數(shù)滿足,則()A.-1 B.0 C.1 D.24.已知是第二象限的角,,則()A. B. C. D.5.在三棱錐中,,且分別是棱,的中點,下面四個結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④6.等比數(shù)列若則()A.±6 B.6 C.-6 D.7.已知函數(shù),若不等式對任意的恒成立,則實數(shù)k的取值范圍是()A. B. C. D.8.若θ是第二象限角且sinθ=,則=A. B. C. D.9.的展開式中各項系數(shù)的和為2,則該展開式中常數(shù)項為A.-40 B.-20 C.20 D.4010.函數(shù)的一個單調(diào)遞增區(qū)間是()A. B. C. D.11.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.12.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,.若,則實數(shù)a的值是______.14.已知圓C:經(jīng)過拋物線E:的焦點,則拋物線E的準(zhǔn)線與圓C相交所得弦長是__________.15.在矩形ABCD中,,,點E,F(xiàn)分別為BC,CD邊上動點,且滿足,則的最大值為________.16.函數(shù)在上的最小值和最大值分別是_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實數(shù)t的值.18.(12分)某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應(yīng)開鑿的直線穿山隧道,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標(biāo)系,如圖所示,山區(qū)邊界曲線為,設(shè)公路與曲線相切于點,的橫坐標(biāo)為.(1)當(dāng)為何值時,公路的長度最短?求出最短長度;(2)當(dāng)公路的長度最短時,設(shè)公路交軸,軸分別為,兩點,并測得四邊形中,,,千米,千米,求應(yīng)開鑿的隧道的長度.19.(12分)已知圓,定點,為平面內(nèi)一動點,以線段為直徑的圓內(nèi)切于圓,設(shè)動點的軌跡為曲線(1)求曲線的方程(2)過點的直線與交于兩點,已知點,直線分別與直線交于兩點,線段的中點是否在定直線上,若存在,求出該直線方程;若不是,說明理由.20.(12分)為了響應(yīng)國家號召,促進(jìn)垃圾分類,某校組織了高三年級學(xué)生參與了“垃圾分類,從我做起”的知識問卷作答隨機(jī)抽出男女各20名同學(xué)的問卷進(jìn)行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果”有關(guān)?男女總計合格不合格總計(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學(xué)生問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學(xué)期望.附:0.1000.0500.0100.0012.7063.8416.63510.82821.(12分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當(dāng)直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設(shè)直線、的交點為;試問的橫坐標(biāo)是否為定值?若是,求出定值;若不是,請說明理由.22.(10分)已知,,,.(1)求的值;(2)求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結(jié)果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側(cè)面均為邊長為2的正方形,所以該正三棱柱的側(cè)面積為故選:B【點睛】本題考查正三棱柱側(cè)面積的計算以及三視圖的認(rèn)識,關(guān)鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎(chǔ)題.2.D【解析】
利用的周期性先將復(fù)數(shù)化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復(fù)平面內(nèi)對應(yīng)的點為,在第二象限,B錯誤;的共軛復(fù)數(shù)為,C錯誤;,D正確.故選:D.【點睛】本題考查復(fù)數(shù)的四則運算,涉及到復(fù)數(shù)的虛部、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模等知識,是一道基礎(chǔ)題.3.C【解析】
推導(dǎo)出,由此能求出的值.【詳解】∵定義在上的函數(shù)滿足,∴,故選C.【點睛】本題主要考查函數(shù)值的求法,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用,屬于中檔題.4.D【解析】
利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導(dǎo)公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點睛】本題考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.5.D【解析】
①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當(dāng)平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.6.B【解析】
根據(jù)等比中項性質(zhì)代入可得解,由等比數(shù)列項的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項符號相同,所以,故選:B.【點睛】本題考查了等比數(shù)列中等比中項的簡單應(yīng)用,注意項的符號特征,屬于基礎(chǔ)題.7.A【解析】
先求出函數(shù)在處的切線方程,在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時,,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點坐標(biāo)為.在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對任意的恒成立,則實數(shù)k的取值范圍是.故選:A【點睛】本題考查了利用數(shù)形結(jié)合思想解決不等式恒成立問題,考查了導(dǎo)數(shù)的應(yīng)用,屬于中檔題.8.B【解析】由θ是第二象限角且sinθ=知:,.所以.9.D【解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應(yīng)的常數(shù)項=80,由5-2r=-1得r=3,對應(yīng)的常數(shù)項=-40,故所求的常數(shù)項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數(shù)項==-40+80=4010.D【解析】
利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項.【詳解】因為,由單調(diào)遞增,則(),解得(),當(dāng)時,D選項正確.C選項是遞減區(qū)間,A,B選項中有部分增區(qū)間部分減區(qū)間.故選:D【點睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識.11.A【解析】
將正四面體補(bǔ)成正方體,通過正方體的對角線與球的半徑關(guān)系,求解即可.【詳解】解:如圖,將正四面體補(bǔ)形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設(shè)球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化,屬于中檔題.12.A【解析】
根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當(dāng)且僅當(dāng),即時“”成立.此時,,,的最小值為,故選:A.【點睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.9【解析】
根據(jù)集合交集的定義即得.【詳解】集合,,,,則a的值是9.故答案為:9【點睛】本題考查集合的交集,是基礎(chǔ)題.14.【解析】
求出拋物線的焦點坐標(biāo),代入圓的方程,求出的值,再求出準(zhǔn)線方程,利用點到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進(jìn)而求出弦長.【詳解】拋物線E:的準(zhǔn)線為,焦點為(0,1),把焦點的坐標(biāo)代入圓的方程中,得,所以圓心的坐標(biāo)為,半徑為5,則圓心到準(zhǔn)線的距離為1,所以弦長.【點睛】本題考查了拋物線的準(zhǔn)線、圓的弦長公式.15.【解析】
利用平面直角坐標(biāo)系,設(shè)出點E,F(xiàn)的坐標(biāo),由可得,利用數(shù)量積運算求得,再利用線性規(guī)劃的知識求出的最大值.【詳解】建立平面直角坐標(biāo)系,如圖(1)所示:設(shè),,,即,又,令,其中,畫出圖形,如圖(2)所示:當(dāng)直線經(jīng)過點時,取得最大值.故答案為:【點睛】本題考查了向量數(shù)量積的坐標(biāo)運算、簡單的線性規(guī)劃問題,解題的關(guān)鍵是建立恰當(dāng)?shù)淖鴺?biāo)系,屬于基礎(chǔ)題.16.【解析】
求導(dǎo),研究函數(shù)單調(diào)性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點睛】本題考查了導(dǎo)數(shù)在函數(shù)最值的求解中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.t=1【解析】
把變形為結(jié)合基本不等式進(jìn)行求解.【詳解】因為即,當(dāng)且僅當(dāng),,時,上述等號成立,所以,即,又x,y,z>0,所以xyzt=1.【點睛】本題主要考查基本不等式的應(yīng)用,利用基本不等式求解最值時要注意轉(zhuǎn)化為適用形式,同時要關(guān)注不等號是否成立,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).18.(1)當(dāng)時,公路的長度最短為千米;(2)(千米).【解析】
(1)設(shè)切點的坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義求出切線的方程為,根據(jù)兩點間距離得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,從而得出極值和最值,即可得出結(jié)果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即可求出的長度.【詳解】(1)由題可知,設(shè)點的坐標(biāo)為,又,則直線的方程為,由此得直線與坐標(biāo)軸交點為:,則,故,設(shè),則.令,解得=10.當(dāng)時,是減函數(shù);當(dāng)時,是增函數(shù).所以當(dāng)時,函數(shù)有極小值,也是最小值,所以,此時.故當(dāng)時,公路的長度最短,最短長度為千米.(2)在中,,,所以,所以,根據(jù)正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【點睛】本題考查利用導(dǎo)數(shù)解決實際的最值問題,涉及構(gòu)造函數(shù)法以及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和極值,還考查正余弦定理的實際應(yīng)用,還考查解題分析能力和計算能力.19.(1);(2)存在,.【解析】
(1)設(shè)以為直徑的圓心為,切點為,取關(guān)于軸的對稱點,連接,計算得到,故軌跡為橢圓,計算得到答案.(2)設(shè)直線的方程為,設(shè),聯(lián)立方程得到,,計算,得到答案.【詳解】(1)設(shè)以為直徑的圓心為,切點為,則,取關(guān)于軸的對稱點,連接,故,所以點的軌跡是以為焦點,長軸為4的橢圓,其中,曲線方程為.(2)設(shè)直線的方程為,設(shè),直線的方程為,同理,所以,即,聯(lián)立,所以,代入得,所以點都在定直線上.【點睛】本題考查了軌跡方程,定直線問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.20.(Ⅰ)填表見解析,有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果”有關(guān);(Ⅱ)分布列見解析,【解析】
(Ⅰ)根據(jù)莖葉圖填寫列聯(lián)表,計算得到答案.(Ⅱ),計算,,,得到分布列,再計算數(shù)學(xué)期望得到答案.【詳解】(Ⅰ)根據(jù)莖葉圖可得:男女總計合格101626不合格10414總計202040,故有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果””有關(guān).(Ⅱ)從莖葉圖可知,成績在60分以下(不含60分)的男女學(xué)生人數(shù)分別是4人和2人,從中任意選2人,基本事件總數(shù)為,,,,012.【點睛】本題考查了獨立性檢驗,分布列,數(shù)學(xué)期望,意在考查學(xué)生的綜合應(yīng)用能力.21.(1)(2)是為定值,的橫坐標(biāo)為定值【解析】
(1)根據(jù)“直線垂直于軸時,四邊形的面積為1”列方程,由此求得,結(jié)合橢圓離心率以及,求得,由此求得橢圓方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,化簡后寫出根與系數(shù)關(guān)系.求得直線的方程,并求得兩直線交點的橫坐標(biāo),結(jié)合根與系數(shù)關(guān)系進(jìn)行化簡,求得的橫坐標(biāo)為定值.【詳解】(1)依題意可知,解得,即;而,即,結(jié)合解得,,因此橢圓方程為(2)由題意得,左焦點,設(shè)直線的方程為:,,.由消去并整理得,∴,.直線的方程為:,直線的方程為:.聯(lián)系方程,解得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 既有鐵路路基注漿加固專項施工方案
- 水泥土防滲墻施工方案
- 2025年中級注冊安全工程師安全生產(chǎn)管理模擬題(含答案解析)
- 2026年直播文化規(guī)范合同
- 2026年家庭網(wǎng)絡(luò)優(yōu)化服務(wù)合同
- 2026年醫(yī)療醫(yī)院學(xué)科建設(shè)咨詢合同
- 2026年國際傳統(tǒng)醫(yī)藥國際城市女性公交合同
- 2026年心理學(xué)基礎(chǔ)知識與實踐應(yīng)用題
- 2026年人力資源管理專業(yè)試題集招聘與培訓(xùn)策略
- 2026年新聞傳播學(xué)專業(yè)知識基礎(chǔ)結(jié)構(gòu)測試筆試試卷
- DB37-T 5316-2025《外墻外保溫工程質(zhì)量鑒定技術(shù)規(guī)程》
- 山東省德州市樂陵市2024-2025學(xué)年七年級上學(xué)期期末考試英語試(答案無聽力原文及音頻)
- 2024年彩鋼瓦安裝合同范本
- 《冠心病》課件(完整版)
- 人教版(2024)六年級全一冊 第17課 設(shè)計我的種植園
- 小學(xué)三年級上冊數(shù)學(xué)期末測試卷(滿分必刷)
- 供貨方案-生產(chǎn)供貨實施方案-供貨方案
- 一種電子煙煙彈和電子煙的制作方法
- 場地平整施工組織說明
- 案例pcs7中datamonitor使用入門
- 創(chuàng)傷性遲發(fā)性顱內(nèi)血腫
評論
0/150
提交評論