版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省“十二校”2025年高三下學(xué)期開學(xué)質(zhì)檢數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是空間中兩個(gè)不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則2.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.3.復(fù)數(shù),若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,則等于()A. B. C. D.4.在“一帶一路”知識(shí)測(cè)驗(yàn)后,甲、乙、丙三人對(duì)成績(jī)進(jìn)行預(yù)測(cè).甲:我的成績(jī)比乙高.乙:丙的成績(jī)比我和甲的都高.丙:我的成績(jī)比乙高.成績(jī)公布后,三人成績(jī)互不相同且只有一個(gè)人預(yù)測(cè)正確,那么三人按成績(jī)由高到低的次序?yàn)锳.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙5.已知等差數(shù)列的前n項(xiàng)和為,,則A.3 B.4 C.5 D.66.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.7.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)8.若函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為().A. B. C. D.9.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.10.函數(shù)(或)的圖象大致是()A. B. C. D.11.如圖,在中,,是上的一點(diǎn),若,則實(shí)數(shù)的值為()A. B. C. D.12.已知復(fù)數(shù)滿足(其中為的共軛復(fù)數(shù)),則的值為()A.1 B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某市公租房源位于、、三個(gè)小區(qū),每位申請(qǐng)人只能申請(qǐng)其中一個(gè)小區(qū)的房子,申請(qǐng)其中任意一個(gè)小區(qū)的房子是等可能的,則該市的任意位申請(qǐng)人中,恰好有人申請(qǐng)小區(qū)房源的概率是______.(用數(shù)字作答)14.已知正實(shí)數(shù)滿足,則的最小值為.15.執(zhí)行以下語句后,打印紙上打印出的結(jié)果應(yīng)是:_____.16.在三棱錐中,已知,且平面平面,則三棱錐外接球的表面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)為何值時(shí),軸為曲線的切線;(2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時(shí),討論零點(diǎn)的個(gè)數(shù).18.(12分)2018年反映社會(huì)現(xiàn)實(shí)的電影《我不是藥神》引起了很大的轟動(dòng),治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場(chǎng)上治療一類慢性病的特效藥品的研發(fā)費(fèi)用(百萬元)和銷量(萬盒)的統(tǒng)計(jì)數(shù)據(jù)如下:研發(fā)費(fèi)用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關(guān)系數(shù)精確到0.01,并判斷與的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時(shí),可用線性回歸方程模型擬合);(2)該藥企準(zhǔn)備生產(chǎn)藥品的三類不同的劑型,,,并對(duì)其進(jìn)行兩次檢測(cè),當(dāng)?shù)谝淮螜z測(cè)合格后,才能進(jìn)行第二次檢測(cè).第一次檢測(cè)時(shí),三類劑型,,合格的概率分別為,,,第二次檢測(cè)時(shí),三類劑型,,合格的概率分別為,,.兩次檢測(cè)過程相互獨(dú)立,設(shè)經(jīng)過兩次檢測(cè)后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.附:(1)相關(guān)系數(shù)(2),,,.19.(12分)已知,,分別為內(nèi)角,,的對(duì)邊,若同時(shí)滿足下列四個(gè)條件中的三個(gè):①;②;③;④.(1)滿足有解三角形的序號(hào)組合有哪些?(2)在(1)所有組合中任選一組,并求對(duì)應(yīng)的面積.(若所選條件出現(xiàn)多種可能,則按計(jì)算的第一種可能計(jì)分)20.(12分)在中,角、、的對(duì)邊分別為、、,且.(1)若,,求的值;(2)若,求的值.21.(12分)在平面直角坐標(biāo)系中,曲線,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線、的極坐標(biāo)方程;(2)在極坐標(biāo)系中,射線與曲線,分別交于、兩點(diǎn)(異于極點(diǎn)),定點(diǎn),求的面積22.(10分)如圖,在直棱柱中,底面為菱形,,,與相交于點(diǎn),與相交于點(diǎn).(1)求證:平面;(2)求直線與平面所成的角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
利用線面平行和垂直的判定定理和性質(zhì)定理,對(duì)選項(xiàng)做出判斷,舉出反例排除.【詳解】解:對(duì)于,當(dāng),且,則與的位置關(guān)系不定,故錯(cuò);對(duì)于,當(dāng)時(shí),不能判定,故錯(cuò);對(duì)于,若,且,則與的位置關(guān)系不定,故錯(cuò);對(duì)于,由可得,又,則故正確.故選:.【點(diǎn)睛】本題考查空間線面位置關(guān)系.判斷線面位置位置關(guān)系利用好線面平行和垂直的判定定理和性質(zhì)定理.一般可借助正方體模型,以正方體為主線直觀感知并準(zhǔn)確判斷.2、A【解析】
首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關(guān)系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設(shè)中點(diǎn)為,連接,,可知,,同時(shí)易知,,所以面,故即為與面所成角,有,故.故選:A.【點(diǎn)睛】本題主要考查了空間幾何題中線面夾角的計(jì)算,屬于基礎(chǔ)題.3、A【解析】
先通過復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,得到,再利用復(fù)數(shù)的除法求解.【詳解】因?yàn)閺?fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,且復(fù)數(shù),所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算和幾何意義,屬于基礎(chǔ)題.4、A【解析】
利用逐一驗(yàn)證的方法進(jìn)行求解.【詳解】若甲預(yù)測(cè)正確,則乙、丙預(yù)測(cè)錯(cuò)誤,則甲比乙成績(jī)高,丙比乙成績(jī)低,故3人成績(jī)由高到低依次為甲,乙,丙;若乙預(yù)測(cè)正確,則丙預(yù)測(cè)也正確,不符合題意;若丙預(yù)測(cè)正確,則甲必預(yù)測(cè)錯(cuò)誤,丙比乙的成績(jī)高,乙比甲成績(jī)高,即丙比甲,乙成績(jī)都高,即乙預(yù)測(cè)正確,不符合題意,故選A.【點(diǎn)睛】本題將數(shù)學(xué)知識(shí)與時(shí)政結(jié)合,主要考查推理判斷能力.題目有一定難度,注重了基礎(chǔ)知識(shí)、邏輯推理能力的考查.5、C【解析】
方法一:設(shè)等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因?yàn)椋?,則.故選C.6、D【解析】
設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進(jìn)而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點(diǎn)睛】本題考查向量投影的計(jì)算,同時(shí)也考查利用向量的模計(jì)算向量的夾角,考查計(jì)算能力,屬于基礎(chǔ)題.7、B【解析】M=y|y=N==x|∴M∩N=(1,2).故選B.8、C【解析】
由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值.【詳解】解:把函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,,,則當(dāng)最大時(shí),,求得,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.9、A【解析】
模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當(dāng),,退出循環(huán),輸出結(jié)果.【詳解】程序運(yùn)行過程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.【點(diǎn)睛】該題考查的是有關(guān)程序框圖的問題,涉及到的知識(shí)點(diǎn)有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.10、A【解析】
確定函數(shù)的奇偶性,排除兩個(gè)選項(xiàng),再求時(shí)的函數(shù)值,再排除一個(gè),得正確選項(xiàng).【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對(duì)稱,排除B,C,當(dāng)時(shí),,排除D,故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時(shí)可通過研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負(fù),以及函數(shù)值的變化趨勢(shì),排除錯(cuò)誤選項(xiàng),得正確結(jié)論.11、B【解析】
變形為,由得,轉(zhuǎn)化在中,利用三點(diǎn)共線可得.【詳解】解:依題:,又三點(diǎn)共線,,解得.故選:.【點(diǎn)睛】本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運(yùn)用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運(yùn)算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點(diǎn)共線?(為平面內(nèi)任一點(diǎn),)12、D【解析】
按照復(fù)數(shù)的運(yùn)算法則先求出,再寫出,進(jìn)而求出.【詳解】,,.故選:D【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)及復(fù)數(shù)的模,考查基本運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
基本事件總數(shù),恰好有2人申請(qǐng)小區(qū)房源包含的基本事件個(gè)數(shù),由此能求出該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源的概率.【詳解】解:某市公租房源位于、、三個(gè)小區(qū),每位申請(qǐng)人只能申請(qǐng)其中一個(gè)小區(qū)的房子,申請(qǐng)其中任意一個(gè)小區(qū)的房子是等可能的,該市的任意5位申請(qǐng)人中,基本事件總數(shù),該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源包含的基本事件個(gè)數(shù):,該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源的概率是.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.14、4【解析】
由題意結(jié)合代數(shù)式的特點(diǎn)和均值不等式的結(jié)論整理計(jì)算即可求得最終結(jié)果.【詳解】.當(dāng)且僅當(dāng)時(shí)等號(hào)成立.據(jù)此可知:的最小值為4.【點(diǎn)睛】條件最值的求解通常有兩種方法:一是消元法,即根據(jù)條件建立兩個(gè)量之間的函數(shù)關(guān)系,然后代入代數(shù)式轉(zhuǎn)化為函數(shù)的最值求解;二是將條件靈活變形,利用常數(shù)代換的方法構(gòu)造和或積為常數(shù)的式子,然后利用基本不等式求解最值.15、1【解析】
根據(jù)程序框圖直接計(jì)算得到答案.【詳解】程序在運(yùn)行過程中各變量的取值如下所示:是否繼續(xù)循環(huán)ix循環(huán)前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環(huán),所以打印紙上打印出的結(jié)果應(yīng)是:1故答案為:1.【點(diǎn)睛】本題考查了程序框圖,意在考查學(xué)生的計(jì)算能力和理解能力.16、【解析】
取的中點(diǎn),設(shè)等邊三角形的中心為,連接.根據(jù)等邊三角形的性質(zhì)可求得,,由等腰直角三角形的性質(zhì),得,根據(jù)面面垂直的性質(zhì)得平面,,由勾股定理求得,可得為三棱錐外接球的球心,根據(jù)球體的表面積公式可求得此外接球的表面積.【詳解】在等邊三角形中,取的中點(diǎn),設(shè)等邊三角形的中心為,連接.由,得,,由已知可得是以為斜邊的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,為三棱錐外接球的球心,外接球半徑,三棱錐外接球的表面積為.故答案為:【點(diǎn)睛】本題考查三棱錐的外接球的表面積,關(guān)鍵在于根據(jù)三棱錐的面的關(guān)系、棱的關(guān)系和長度求得外接球的球心的位置,球的半徑,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(1)設(shè)切點(diǎn)坐標(biāo)為,然后根據(jù)可解得實(shí)數(shù)的值;(2)令,,然后對(duì)實(shí)數(shù)進(jìn)行分類討論,結(jié)合和的符號(hào)來確定函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1),,設(shè)曲線與軸相切于點(diǎn),則,即,解得.所以,當(dāng)時(shí),軸為曲線的切線;(2)令,,則,,由,得.當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為減函數(shù).,.①當(dāng),即當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);②當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);③當(dāng),即當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn);④當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);⑤當(dāng),即當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn).綜上所述,當(dāng)或時(shí),函數(shù)只有一個(gè)零點(diǎn);當(dāng)或時(shí),函數(shù)有兩個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn).【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)的幾何意義研究切線方程和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,關(guān)鍵是分類討論思想的應(yīng)用,屬難題.18、(1)0.98;可用線性回歸模型擬合.(2)【解析】
(1)根據(jù)題目提供的數(shù)據(jù)求出,代入相關(guān)系數(shù)公式求出,根據(jù)的大小來確定結(jié)果;(2)求出藥品的每類劑型經(jīng)過兩次檢測(cè)后合格的概率,發(fā)現(xiàn)它們相同,那么經(jīng)過兩次檢測(cè)后,,三類劑型合格的種類數(shù)為,服從二項(xiàng)分布,利用二項(xiàng)分布的期望公式求解即可.【詳解】解:(1)由題意可知,,由公式,,∴與的關(guān)系可用線性回歸模型擬合;(2)藥品的每類劑型經(jīng)過兩次檢測(cè)后合格的概率分別為,,,由題意,,.【點(diǎn)睛】本題考查相關(guān)系數(shù)的求解,考查二項(xiàng)分布的期望,是中檔題.19、(1)①,③,④或②,③,④;(2).【解析】
(1)由①可求得的值,由②可求出角的值,結(jié)合題意得出,推出矛盾,可得出①②不能同時(shí)成為的條件,由此可得出結(jié)論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對(duì)應(yīng)的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得,,所以,由②得,,解得或(舍),所以,因?yàn)椋?,所以,所以,矛?所以不能同時(shí)滿足①,②.故滿足①,③,④或②,③,④;(2)若滿足①,③,④,因?yàn)?,所以,?解得.所以的面積.若滿足②,③,④由正弦定理,即,解得,所以,所以的面積.【點(diǎn)睛】本題考查三角形能否成立的判斷,同時(shí)也考查了利用正弦定理和余弦定理解三角形,以及三角形面積的計(jì)算,要結(jié)合三角形已知元素類型合理選擇正弦定理或余弦定理解三角形,考查運(yùn)算求解能力,屬于中等題.20、(1);(2).【解析】
(1)利用余弦定理得出關(guān)于的二次方程,結(jié)合,可求出的值;(2)利用兩角和的余弦公式以及誘導(dǎo)公式可求出的值,利用同角三角函數(shù)的基本關(guān)系求出的值,然后利用二倍角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全員A證考試模擬卷包及完整答案詳解(網(wǎng)校專用)
- 安全員A證考試練習(xí)題附答案詳解(輕巧奪冠)
- 工程物料消耗情況評(píng)估方案
- 未來五年涉外仲裁服務(wù)企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級(jí)戰(zhàn)略分析研究報(bào)告
- 未來五年孤寡老人幫助服務(wù)企業(yè)ESG實(shí)踐與創(chuàng)新戰(zhàn)略分析研究報(bào)告
- 未來五年仿形裝置企業(yè)ESG實(shí)踐與創(chuàng)新戰(zhàn)略分析研究報(bào)告
- 未來五年旅游正餐服務(wù)企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級(jí)戰(zhàn)略分析研究報(bào)告
- BIM云計(jì)算平臺(tái)應(yīng)用方案
- 押題寶典安全員A證考試通關(guān)考試題庫附參考答案詳解(精練)
- 熱力產(chǎn)品市場(chǎng)推廣方案
- 農(nóng)藝工教學(xué)計(jì)劃
- TSZSA 015-2024 COB LED光源封裝產(chǎn)品技術(shù)規(guī)范
- 2024新外研社版英語七下單詞默寫表(開學(xué)版)
- 衛(wèi)生管理組織制度模版(2篇)
- 《游園》課件統(tǒng)編版高中語文必修下冊(cè)
- 質(zhì)量責(zé)任劃分制度
- JT∕T 1496-2024 公路隧道施工門禁系統(tǒng)技術(shù)要求
- 2024版美團(tuán)商家合作協(xié)議合同范本
- 一年級(jí)上冊(cè)數(shù)學(xué)應(yīng)用題50道(重點(diǎn))
- 嵌入式系統(tǒng)實(shí)現(xiàn)與創(chuàng)新應(yīng)用智慧樹知到期末考試答案章節(jié)答案2024年山東大學(xué)
- 線纜及線束組件檢驗(yàn)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論