版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第3講函數(shù)與分析考點解讀模塊考點水平層級平面直角坐標系平面直角坐標系的有關概念,直角坐標平面上的點與坐標之間的一一對應關系Ⅱ直角坐標平面上點的平移、對稱以及簡單圖形的對稱問題Ⅲ直角坐標平面內兩點的距離公式Ⅲ函數(shù)與分析函數(shù)以及函數(shù)的定義域、函數(shù)值等有關概念,函數(shù)的表示法,常值函數(shù)Ⅰ正比例函數(shù)、反比例函數(shù)、一次函數(shù)、二次函數(shù)的概念Ⅱ用待定系數(shù)法求正比例函數(shù)、反比例函數(shù)、一次函數(shù)、二次函數(shù)的解析式Ⅲ畫正比例函數(shù)、反比例函數(shù)、一次函數(shù)、二次函數(shù)的圖像Ⅱ正比例函數(shù)、反比例函數(shù)、一次函數(shù)、二次函數(shù)的基本性質Ⅲ一次函數(shù)的應用Ⅲ備注理解性理解水平(記為Ⅱ)探究性理解水平(記為Ⅲ)模塊一:平面直角坐標知識精講平面直角坐標系在平面內,兩條互相垂直且有公共原點的數(shù)軸,就組成了平面直角坐標系.為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限.注意:x軸和y軸上的點,不屬于任何象限.點的坐標1、點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒.2、平面內點的坐標是有序實數(shù)對,當時,(a,b)和(b,a)是兩個不同點的坐標.3、不同位置的點的坐標的特征:①各象限內點的坐標的特征:點P(x,y)在第一象限x>0,y>0;點P(x,y)在第二象限x<0,y>0;點P(x,y)在第三象限x<0,y<0;點P(x,y)在第四象限x>0,y<0.②坐標軸上的點的特征:點P(x,y)在x軸上y=0,x為任意實數(shù);點P(x,y)在y軸上x=0,y為任意實數(shù);點P(x,y)既在x軸上,又在y軸上x=y=0,即點P坐標為(0,0).③兩條坐標軸夾角平分線上點的坐標的特征:點P(x,y)在第一、三象限夾角平分線上x=y;點P(x,y)在第二、四象限夾角平分線上x+y=0.④和坐標軸平行的直線上點的坐標的特征:位于平行于x軸的直線上的各點的縱坐標相同;位于平行于y軸的直線上的各點的橫坐標相同.點的運動1、點到坐標軸及原點的距離:點P(x,y)到x軸的距離等于;點P(x,y)到y(tǒng)軸的距離等于.2、在直角坐標平面內:平行于x軸的直線上的兩點A(,)、B(,y)的距離;平行于y軸的直線上的兩點C(x,)、D(x,)的距離.點P到原點的距離等于.兩點間的距離公式:點A坐標為(,),點B坐標為(,),則AB間的距離,即線段AB的長度為.3、點的對稱:若直角坐標系內一點P(a,b),則P關于x軸對稱的點為(a,),P關于y軸對稱的點為(,b),關于原點對稱的點為(,).4、坐標平移:若直角坐標系內一點P(a,b)向左平移h個單位,坐標變?yōu)镻(,b),向右平移h個單位,坐標變?yōu)镻(,b);向上平移h個單位,坐標變?yōu)镻(a,),向下平移h個單位,坐標變?yōu)镻(a,).夯實基礎一、單選題1.(2020·上海九年級專題練習)已知點在第四象限,并且它到軸的距離為3,到軸的距離為4,則點的坐標為()A. B.C. D.2.(2021·上海九年級專題練習)與平面直角坐標系中的點具有一一對應關系的是()A.實數(shù) B.有理數(shù)C.有序實數(shù)對 D.有序有理數(shù)對3.(2019·上海市閔行區(qū)七寶第二中學九年級期中)如圖,在平面直角坐標系內有一點P(3,4),那么OP與軸正半軸的夾角的余切值是()A. B. C. D.二、填空題4.(2021·上海九年級專題練習)在直角坐標平面內,點(-2,1)關于軸的對稱點的坐標是__________.5.(2021·上海九年級專題練習)如果點P(m,1﹣2m)在第四象限,則m的取值范圍是_______.6.(2021·上海九年級專題練習)已知點是直角坐標平面內的點,如果,那么點在第________象限.能力提升1.(2020·上海普陀區(qū)·九年級月考)如果點在軸上,那么點所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(2021·上海九年級專題練習)平面直角坐標系中,已知點到軸的距離為2,到軸的距離為3,且點在第二象限,則點的坐標是__________.3.(2020·上海市靜安區(qū)實驗中學九年級專題練習)如圖,邊長為2的等邊△ABC中,BC⊥x軸,C點的坐標是,那么A點的坐標是_______,B點的坐標是_______.4.(2021·上海九年級專題練習)已知點且點到兩坐標軸距離相等,則_________.5.(2021·上海九年級專題練習)在平面直角坐標系中,將點(-b,-a)稱為點(a,b)的“關聯(lián)點”(例如點(-2,-1)是點(1,2)的“關聯(lián)點”).如果一個點和它的“關聯(lián)點”在同一象限內,那么這一點在第_______象限.6.(2013·上海松江區(qū)·九年級月考)如圖,在平面內,兩條直線l1,l2相交于點O,對于平面內任意一點M,若p,q分別是點M到直線l1,l2,的距離,則稱(p,q)為點M的“距離坐標”.根據(jù)上述規(guī)定,“距離坐標”是(3,2)的點共有___________個.7.(2012·上海嘉定區(qū)·九年級二模)如圖,在平面直角坐標系中,點在軸上,點的坐標為(4,2),若四邊形為菱形,則點的坐標為.8.(2019·上海普陀區(qū)·九年級期中)如圖,在平面直角坐標系中,直線與軸、軸分別交于點、,拋物線經過、兩點,且對稱軸為直線.(1)求拋物線的表達式;(2)如果點是這拋物線上位于軸下方的一點,且△的面積是.求點的坐標.9.(2021·上海九年級專題練習)如圖,在平面直角坐標系中,已知,其中a,b滿足(1)填空:a=,b=;(2)如果在第三象限內有一點C(-2,m),請用含m的式子表示△ABC的面積;(3)在⑵條件下,當時,在y軸上有一點P,使得△BMP的面積與△ABM的面積相等,請求出點P的坐標.10.(2020·上海浦東新區(qū)·九年級月考)在等腰直三角形ABC中,,已知,,M為邊BC的中點.(1)求點C的坐標;(2)設點M的坐標為(a,b),求的值;(3)探究:在x軸上是否存在點P,使以O、P、M點的三角形與相似?若存在,請求出點P的坐標;若不存在,請簡述理由.模塊二:函數(shù)的有關概念知識精講函數(shù)在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量.一般地,在某一變化過程中有兩個變量x與y,如果對于變量x在允許取值范圍內的每一個確定值,變量y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數(shù).函數(shù)的定義域函數(shù)自變量允許取值的范圍叫做這個函數(shù)的定義域.函數(shù)值如果變量y是自變量x的函數(shù),那么對于x在定義域內取定的一個值a,變量y的對應值叫做當x=a時的函數(shù)值,可記為.夯實基礎一、填空題1.(2020·上海浦東新區(qū)·九年級三模)已知函數(shù),那么f(-2)=____.2.(2021·上海九年級專題練習)函數(shù)y=的定義域是_____.3.(2011·上海靜安區(qū)·中考模擬)在函數(shù)中,自變量的取值范圍是________.4.(2019·上海金山區(qū)·九年級月考)上海市居民用戶燃氣收費標準如下表:某居民用戶用氣量在第一檔,那么該用戶每年燃氣費y(元)與年用氣量x(立方米)的函數(shù)關系式是______________5.(2021·上海金山區(qū)·九年級一模)已知,那么______.6.(2021·上海黃浦區(qū)·九年級一模)如圖,一個管道的截面圖,其內徑(即內圓半徑)為10分米,管壁厚為x分米,假設該管道的截面(陰影)面積為y平方分米,那么y關于x的函數(shù)解析式是________.(不必寫定義域)7.(2021·上海九年級專題練習)已知函數(shù),那么______.(填“>”、“=”或“<”)8.(2021·上海九年級專題練習)在函數(shù)中,那么_______________.9.(2021·上海九年級專題練習)如圖是上海某日的氣溫隨時間變化的圖象,根據(jù)圖象可知,在這一天中達到最高氣溫的時刻是_____________.能力提升1.(2021·上海徐匯區(qū)·九年級一模)定義:表示不超過實數(shù)的最大整數(shù)例如:,,根據(jù)你學習函數(shù)的經驗,下列關于函數(shù)的判斷中,正確的是()A.函數(shù)的定義域是一切整數(shù)B.函數(shù)的圖像是經過原點的一條直線C.點在函數(shù)圖像上D.函數(shù)的函數(shù)值隨的增大而增大2.(2021·上海九年級專題練習)如圖,在四邊形中,動點從點開始沿的路徑勻速前進到為止,在這個過程中,的面積隨時間的變化關系用圖象表示正確的是()A.B.C.D.3.(2021·上海九年級專題練習)如圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰Rt△ABC,使∠BAC=90°,設點B的橫坐標為x,設點C的縱坐標為y,能表示y與x的函數(shù)關系的圖象大致是()A. B. C. D.4.(2021·上海九年級專題練習)如圖,在梯形ABCD中,AD//BC,AB=CD,AD=5,BC=15,.E為射線CD上任意一點,過點A作AF//BE,與射線CD相交于點F.聯(lián)結BF,與直線AD相交于點G.設CE=x,.(1)求AB的長;(2)當點G在線段AD上時,求y關于x的函數(shù)解析式,并寫出函數(shù)的定義域;(3)如果,求線段CE的長.5.(2021·上海九年級專題練習)有這樣一個問題:探究函數(shù)y=的圖象與性質.小彤根據(jù)學習函數(shù)的經驗,對函數(shù)y=的圖象與性質進行了探究.下面是小彤探究的過程,請補充完整:(1)函數(shù)y=的自變量x的取值范圍是;(2)下表是y與x的幾組對應值:x…﹣2﹣101245678…y…m0﹣132…則m的值為;(3)如圖所示,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據(jù)描出的點,畫出了圖象的一部分,請根據(jù)剩余的點補全此函數(shù)的圖象;(4)觀察圖象,寫出該函數(shù)的一條性質;(5)若函數(shù)y=的圖象上有三個點A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,則y1、y2、y3之間的大小關系為;模塊三:一次函數(shù)與反比例函數(shù)知識精講正比例函數(shù)如果兩個變量的每一組對應值的比值是一個常數(shù)(這個常數(shù)不等于零),那么就說這兩個變量成正比例.解析式形如(k是常數(shù),)的函數(shù)叫做正比例函數(shù).其中常數(shù)k叫做比例系數(shù).一次函數(shù)一般的,解析式形如(k、b為常數(shù),且)的函數(shù)叫做一次函數(shù).正比例函數(shù)與一次函數(shù)的關系:當時,解析式就成為(k、b為常數(shù),且),這時,y是x的正比例函數(shù).正比例函數(shù)是一次函數(shù)的特例.反比例函數(shù)如果兩個變量的每一組對應值的乘積是一個不等于零的常數(shù),那么就說這兩個變量成反比例.解析式形如(k是常數(shù),)的函數(shù)叫做反比例函數(shù).其中常數(shù)k叫做比例系數(shù).正比例函數(shù)、反比例函數(shù)的圖像及性質函數(shù)正比例函數(shù)反比例函數(shù)解析式(k是常數(shù),)(k是常數(shù),)定義域一切實數(shù)的一切實數(shù)k的符號k>0k<0k>0k<0經過象限一、三二、四一、三二、四圖像xxyOxxyOxxyOxxyO性質y隨x的增大而增大y隨x的增大而減小在每個象限內,y隨x的增大而減小在每個象限內,y隨x的增大而增大一次函數(shù)的圖像和性質函數(shù)一次函數(shù)解析式(k、b為常數(shù),且)定義域一切實數(shù)k、b的符號k>0,b>0k>0,b<0k<0,b>0k<0,b<0經過象限一、二、三一、三、四一、二、四二、三、四圖像xxyOxxyOxxyOxxyO性質y隨x的增大而增大y隨x的增大而減小夯實基礎一、單選題1.(2021·上海九年級專題練習)一次函數(shù)的圖像在軸的截距是()A.2 B.-2 C.3 D.-32.(2021·上海九年級專題練習)已知一次函數(shù)y=(3﹣a)x+3,如果y隨自變量x的增大而增大,那么a的取值范圍為()A.a<3 B.a>3 C.a<﹣3 D.a>﹣3.3.一次函數(shù)的圖像不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.(2021·上海九年級專題練習)反比例函數(shù)的圖像經過點()A.(2,3) B.(1,6) C.(9,) D.(-2,-3)5.(2020·上海普陀區(qū)·九年級二模)關于函數(shù),下列說法中錯誤的是()A.函數(shù)的圖象在第二、四象限B.y的值隨x的值增大而增大C.函數(shù)的圖象與坐標軸沒有交點D.函數(shù)的圖象關于原點對稱6.(2020·上海青浦區(qū)·九年級二模)如果反比例函數(shù)y=的圖象在二、四象限,那么k的取值范圍是()A.k>0 B.k<0 C.k≥0 D.k≤07.(2019·上海全國·九年級單元測試)已知點,在雙曲線上.如果,而且,則以下不等式一定成立的是()A. B. C. D.8.(2020·上海浦東新區(qū)·九年級二模)一次函數(shù)的圖像經過()A.第一、二、三象限 B.第二、三、四象限 C.第一、三、四象限 D.第一、二、四象限9.(2021·上海九年級專題練習)如果A(-2,n),B(2,n),C(4,n+12)這三個點都在同一個函數(shù)的圖像上,那么這個函數(shù)的解析式可能是()A. B. C. D.10.(2019·上海江灣初級中學九年級三模)已知一次函數(shù)y=mx+n的圖象如圖所示,則m,n的取值范圍是A.m>0,n<0 B.m>0,n>0C.m<0,n<0 D.m<0,n>011.(2020·上海中考真題)已知反比例函數(shù)的圖象經過點(2,﹣4),那么這個反比例函數(shù)的解析式是()A.y= B.y=﹣ C.y= D.y=﹣12.(2019·青浦東方中學九年級期中)在函數(shù)(k>0)的圖像上有三點A1(x1,y1).A2(x2.y2).A3(x3.y3),若x1<x2<0<x3,則下列各式中,正確的有A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y213.(2021·上海九年級專題練習)如圖,過反比例函數(shù)y=(x<0)圖象上的一點A作AB⊥x軸于點B,連接AO,若S△AOB=2,則k的值是()A.2 B.﹣2 C.4 D.﹣4二、填空題14.(2020·上海普陀區(qū)·九年級月考)如果正比例函數(shù)的圖像經過第一、三象限,那么的值隨著的值增大而__________.(填“增大”或“減小”)15.(2021·上海九年級專題練習)上海市居民用戶燃氣收費標準如表:年用氣量(立方米)每立方米價格(元)第一檔0﹣﹣﹣3103.00第二檔310(含)﹣﹣﹣520(含)3.30第三檔520以上4.20某居民用戶用氣量在第一檔,那么該用戶每年燃氣費y(元)與年用氣量x(立方米)的函數(shù)關系式是__.16.(2021·上海九年級專題練習)如果函數(shù)y=kx(k≠0)的圖象經過第二、四象限,那么y的值隨x的值增大而_____.(填“增大”或“減小”)17.(2021·上海九年級專題練習)如果將直線y=3x平移,使其經過點(0,﹣1),那么平移后的直線表達式是_____.18.(2018·上海楊浦區(qū)·九年級三模)一次函數(shù)y=kx+b(k≠0)的圖象如圖所示,那么不等式kx+b<0的解集是_____.19.(2021·上海九年級專題練習)已知反比例函數(shù),如果在這個函數(shù)圖象所在的每一個象限內,的值隨著的值增大而增大,那么的取值范圍是______.20.(2021·上海九年級專題練習)如果反比例函數(shù)y=(k是常數(shù),k≠0)的圖象經過點(﹣5,﹣1),那么在這個函數(shù)圖象所在的每個象限內,y的值隨x的值增大而_____(填“增大”或“減小”).21.(2019·上海閔行區(qū)·中考模擬)已知反比例函數(shù)y=k22.(2021·上海九年級專題練習)如果一次函數(shù)圖像經過、兩點(如圖),則該一次函數(shù)的解析式為__________.23.(2021·上海九年級專題練習)如果一次函數(shù)的圖像與直線平行,且過點(-3,5),那么該一次函數(shù)解析式為__________.24.(2021·上海九年級專題練習)定義:對于函數(shù)y=f(x),如果當a≤x≤b時,m≤y≤n,且滿足n﹣m=k(b﹣a)(k是常數(shù)),那么稱此函數(shù)為“k級函數(shù)”.如:正比例函數(shù)y=﹣3x,當1≤x≤3時,﹣9≤y≤﹣3,則﹣3﹣(﹣9)=k(3﹣1),求得k=3,所以函數(shù)y=﹣3x為“3級函數(shù)”.如果一次函數(shù)y=2x﹣1(1≤x≤5)為“k級函數(shù)”,那么k的值是_____.25.(2021·上海九年級專題練習)某同學計劃購買一雙運動鞋,在網站上瀏覽時發(fā)現(xiàn)如表所示的男鞋尺碼對照表.中碼CHN220225230…250255260…美碼USA4.555.5…7.588.5…如果美碼(y)與中碼(x)之間滿足一次函數(shù)關系,那么y關于x的函數(shù)關系式為_____.26.(2021·上海九年級專題練習)已知一次函數(shù)的函數(shù)圖像與軸交于點,且坐標平面內有一點為坐標原點,則_________________.27.(2021·上海九年級專題練習)如果,,那么__________.28.(2021·上海九年級專題練習)如果函數(shù)(a為常數(shù))的圖象上有兩點、,那么函數(shù)值_______.(填“”、“”或“”)29.(2020·上海九年級二模)點A,B分別是雙曲線上的點,軸正半軸于點C,軸于點D,聯(lián)結AD,BC,若四邊形ACBD是面積為12的平行四邊形,則________.30.(2020·上海浦東新區(qū)·九年級二模)如果點、在反比例函數(shù)的圖象上,那么_____.(填“”、“”或“”)31.(2021·上海九年級專題練習)如果反比例函數(shù)(是常數(shù),)的圖像經過點,那么這個反比例函數(shù)的圖像在第_________象限.32.(2020·上海市靜安區(qū)實驗中學九年級期中)已知點P位于第三象限內,且點P到兩坐標軸的距離分別為3和4,若反比例函數(shù)圖像經過點P,則該反比例函數(shù)的解析式為_______.三、解答題33.(2021·上海九年級專題練習)甲、乙兩組同時加工某種零件,甲組每小時加工80件,乙組加工的零件數(shù)量y(件)與時間x(小時)為一次函數(shù)關系,部分數(shù)據(jù)如下表所示.x(小時)246y(件)50150250(1)求y與x之間的函數(shù)關系式;(2)甲、乙兩組同時生產,加工的零件合在一起裝箱,每滿340件裝一箱,零件裝箱的時間忽略不計,求經過多長時間恰好裝滿第1箱?能力提升一、單選題1.(2012·上海奉賢區(qū)·九年級一模)小亮從家步行到公交車站臺,等公交車去學校.圖中的折線表示小亮的行程s(km)與所花時間t(min)之間的函數(shù)關系.下列說法錯誤的是A.他離家8km共用了30min B.他等公交車時間為6minC.他步行的速度是100m/min D.公交車的速度是350m/min2.(2021·上海九年級專題練習)已知(,),(,),(,)是反比例函數(shù)的圖像上的三個點,且,,則,,的大小關系是()A.; B.; C.; D..3.(2021·上海九年級專題練習)如圖,兩個反比例函數(shù)和在第一象限內的圖象分別是和,點P在上,軸于點,交于點B,連接,,則的面積為()A.1 B.2 C.4 D.無法計算4.(2019·上海全國·九年級單元測試)今年,某公司推出一款新手機深受消費者推崇,但價格不菲.為此,某電子商城推出分期付款購買手機的活動,一部售價為9688元的新手機,前期付款3000元,后期每個月分別付相同的數(shù)額,則每個月付款額y(元)與付款月數(shù)x(x為正整數(shù))之間的函數(shù)關系式是()A.y=-3000 B.y=+3000C.y= D.y=5.(2019·上海全國·九年級單元測試)如圖,在平面直角坐標系中,點P(1,4)、Q(m,n)在函數(shù)(x>0)的圖象上,當m>1時,過點P分別作x軸、y軸的垂線,垂足為點A,B;過點Q分別作x軸、y軸的垂線,垂足為點C、D.QD交PA于點E,隨著m的增大,四邊形ACQE的面積()A.減小 B.增大 C.先減小后增大 D.先增大后減小6.(2019·上海全國·九年級單元測試)如圖,在△ABC中,點O是∠ABC和∠ACB兩個內角平分線的交點,過點O作EF∥BC分別交AB,AC于點E,F(xiàn),已知△ABC的周長為8,BC=x,△AEF的周長為y,則表示y與x的函數(shù)圖象大致是()A. B.C. D.二、填空題7.(2021·上海九年級專題練習)如圖,點M的坐標為(3,2),動點P從點O出發(fā),沿y軸以每秒1個單位的速度向上移動,且過點P的直線l:y=﹣x+b也隨之移動,若點M關于l的對稱點落在坐標軸上,設點P的移動時間為t,則t的值是__.8.(2021·上海九年級專題練習)如圖,一次函數(shù)y=的圖象與正比例函數(shù)y=mx(m≠0)的圖象交于點A(a,2),與x軸交于點B.現(xiàn)將直線OA向右平移使其經過點B,平移后的直線與y軸交于點C,連接AC,則四邊形AOBC的面積為_____.9.(2019·上海交大附中九年級)直線上依次有、、、四點,它們分別是直線與軸、雙曲線、軸的交點,若,則的值為______.10.(2021·上海九年級專題練習)如圖,已知在平面直角坐標系中,點A在x軸正半軸上,點B在第一象限內,反比例函數(shù)y=的圖象經過△OAB的頂點B和邊AB的中點C,如果△OAB的面積為6,那么k的值是_____.11.(2020·上海九年級專題練習)如圖,函數(shù)的圖像經過的頂點和邊的中點,如果點的橫坐標為3,則點的坐標為________________.12.(2019·上海全國·九年級單元測試)如圖,點A在雙曲線y=1x(x>0)上,點B在雙曲線y=4x(x>0)上,且AB∥x軸,BC∥y軸,點C在x軸上,則△13.(2019·上海全國·九年級單元測試)如圖,Rt△ABC的直角邊BC在x軸負半軸上,斜邊AC上的中線BD的反向延長線交y軸負半軸于點E,反比例函數(shù)y=﹣2x(x<0)的圖象過點A,則△BEC14.(2019·上海全國·九年級單元測試)如圖,過原點的直線l與反比例函數(shù)y=﹣的圖象交于M,N兩點,若MO=5,則ON=_____.根據(jù)圖象猜想,線段MN的長度的最小值_____.15.(2021·上海九年級專題練習)如圖,點A的坐標是(2,0),△ABO是等邊三角形,點B在第一象限,若反比例函數(shù)的圖象經過點B,則k的值是_____.16.(2018·上海普陀區(qū)·中考模擬)在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為_____.三、解答題17.(2021·上海九年級專題練習)如圖,一次函數(shù)與反比例函數(shù)的圖象交于,兩點.(1)求一次函數(shù)的解析式;(2)根據(jù)圖象直接寫出的x的取值范圍;(3)求的面積.18.(2019·上海全國·九年級單元測試)如圖,在平面直角坐標系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側),已知A點的縱坐標是2;(1)求反比例函數(shù)的表達式;(2)根據(jù)圖象直接寫出﹣x>的解集;(3)將直線l1:y=﹣x沿y向上平移后的直線l2與反比例函數(shù)y=在第二象限內交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.模塊四:二次函數(shù)知識精講二次函數(shù)一般地,解析式形如(其中a、b、c是常數(shù),且)的函數(shù)叫做二次函數(shù).二次函數(shù)的定義域為一切實數(shù).而在具體問題中,函數(shù)的定義域根據(jù)實際意義來確定.二次函數(shù)的圖像1、的圖像:在平面直角坐標系xOy中,按照下列步驟畫二次函數(shù)的圖像.(1)列表:取自變量x的一些值,計算相應的函數(shù)值y,如下表所示:x…-2-1012……41014…(2)描點:分別以所取的x的值和相應的函數(shù)值y作為點的橫坐標和縱坐標,描出這些坐標所對應的各點,如圖1所示.(3)連線:用光滑的曲線把所描出的這些點順次聯(lián)結起來,得到函數(shù)的圖像,如圖2所示.二次函數(shù)的圖像是一條曲線,分別向左上方和右上方無限伸展.它屬于一類特殊的曲線,這類曲線稱為拋物線.二次函數(shù)的圖像就稱為拋物線.2、二次函數(shù)的圖像:拋物線()的對稱軸是y軸,即直線x=0;頂點是原點.當時,拋物線開口向上,頂點為最低點;當時,拋物線開口向下,頂點為最高點.3、二次函數(shù)的圖像:一般地,二次函數(shù)的圖像是拋物線,稱為拋物線,它可以通過將拋物線向上(時)或向下(時)平移個單位得到.拋物線(其中a、c是常數(shù),且)的對稱軸是y軸,即直線x=0;頂點坐標是(0,c).拋物線的開口方向由a所取值的符號決定,當時,開口向上,頂點是拋物線的最低點;當時,開口向下,頂點是拋物線的最高點.4、二次函數(shù)的圖像:一般地,二次函數(shù)的圖像是拋物線,稱為拋物線,它可以通過將拋物線向左(時)或向右(時)平移個單位得到.拋物線(其中a、m是常數(shù),且)的對稱軸是過點(-m,0)且平行(或重合)于y軸的直線,即直線x=-m;頂點坐標是(-m,0).當時,開口向上,頂點是拋物線的最低點;當時,開口向下,頂點是拋物線的最高點.5、二次函數(shù)的圖像:二次函數(shù)(其中a、m、k是常數(shù),且)的圖像即拋物線,可以通過將拋物線進行兩次平移得到.這兩次平移可以是:先向左(時)或向右(時)平移個單位,再向上(時)或向下(時)平移個單位.利用圖形平移的性質,可知:拋物線(其中a、m、k是常數(shù),且)的對稱軸是經過點(,0)且平行于y軸的直線,即直線x=;拋物線的頂點坐標是(,k).拋物線的開口方向由a所取值的符號決定,當時,開口向上,頂點是拋物線的最低點;當時,開口向下,頂點是拋物線的最高點.6、二次函數(shù)的圖像:二次函數(shù)的圖像稱為拋物線,這個函數(shù)的解析式就是這條拋物線的表達式.任意一個二次函數(shù)(其中a、b、c是常數(shù),且)都可以運用配方法,把它的解析式化為的形式.對配方得:.由此可知:拋物線(其中a、b、c是常數(shù),且)的對稱軸是直線,頂點坐標是(,).當時,拋物線開口向上,頂點是拋物線的最低點,拋物線在對稱軸(即直線)左側的部分是下降的,在對稱軸右側的部分是上升的;當時,拋物線開口向下,頂點是拋物線的最高點,拋物線在對稱軸(即直線)左側的部分是上升的,在對稱軸右側的部分是下降的.二次函數(shù)的解析式的確定1、一般式()(1)任何二次函數(shù)都可以整理成一般式()的形式;(2)如果已知二次函數(shù)的圖像上三點的坐標,可用一般式求解二次函數(shù)的解析式.2、頂點式()(1)任何二次函數(shù)經過配方都可以整理成()的形式,這叫做二次函數(shù)的頂點式,而(,k)為拋物線的頂點坐標;(2)如果已知二次函數(shù)的頂點坐標和圖像上任意一點的坐標,都可以用頂點式來求解二次函數(shù)的解析式;(3)對于任意的二次函數(shù),都可以配方為:的形式.3、交點式()(1)交點式:(),其中x1,x2為二次函數(shù)圖像與x軸的兩個交點的橫坐標;(2)已知二次函數(shù)與x軸的交點坐標,和圖像上任意一點時,可用交點式求解二次函數(shù)解析式;(3)已知二次函數(shù)與x軸的交點坐標(x1,0)、(x2,0),可知其對稱軸為;(4)根據(jù)二次函數(shù)的對稱性可知,對于函數(shù)圖像上的兩點(x1,a)、(x2,a),如果它們有相同的縱坐標,則可知二次函數(shù)的對稱軸為;(5)對于任意二次函數(shù),當時,即,根據(jù)一元二次方程的求根公式可得:、;(6)對稱式:(),當拋物線經過點(x1,k)、(x2,k)時,可以用對稱式來求解二次函數(shù)的解析式.二次函數(shù)的圖像的平移1、二次函數(shù)的平移(1)將二次函數(shù)左右平移:向左平移m個單位,函數(shù)解析式變?yōu)椋幌蛴移揭苖個單位,函數(shù)解析式變?yōu)椋?)將二次函數(shù)上下平移:向上平移n個單位,函數(shù)解析式變?yōu)?;向下平移n個單位,函數(shù)解析式變?yōu)椋?)通常,在平移前,將二次函數(shù)化成的形式,再根據(jù)平移的情況寫出平移后函數(shù)的頂點式,再將頂點式整理成一般式.二次函數(shù)的圖像的對稱1、關于x軸對稱:關于x軸對稱后,得到的解析式是;關于x軸對稱后,得到的解析式是.2、關于y軸對稱:關于y軸對稱后,得到的解析式是;關于y軸對稱后,得到的解析式是.3、關于原點對稱:關于原點對稱后,得到的解析式是;關于原點對稱后,得到的解析式是.4、關于頂點對稱:關于頂點對稱后,得到的解析式是;關于y軸對稱后,得到的解析式是.5、關于點(p,q)對稱:關于點(p,q)對稱后,得到的解析式是.夯實基礎一、單選題1.(2021·上海金山區(qū)·九年級一模)已知二次函數(shù),那么該二次函數(shù)圖像的對稱軸是()A.直線 B.直線 C.直線 D.直線2.(2021·上海金山區(qū)·九年級一模)下列各點在拋物線上的是()A. B. C. D.3.(2021·上海徐匯區(qū)·九年級一模)已知拋物線經過點,那么下列各點中,該拋物線必經過的點是()A. B. C. D.4.(2021·上海徐匯區(qū)·九年級一模)將拋物線先向右平移個單位,再向下平移個單位后,所得拋物線的表達式是()A. B.C. D.5.(2021·上海長寧區(qū)·九年級一模)己知二次函數(shù)的圖象如圖所示,那么a、c滿足()A.a>0,c>0 B.a>0,c<0 C.a<0,c>0 D.a<0,c<06.(2021·上海市靜安區(qū)實驗中學九年級一模)拋物線的頂點坐標是()A. B. C. D.7.(2021·上海市徐匯區(qū)教育學院九年級一模)關于拋物線,下列說法中,正確的是()A.經過坐標原點 B.頂點是坐標原點 C.有最高點 D.對稱軸是直線8.(2021·上海黃浦區(qū)·九年級一模)小明準備畫一個二次函數(shù)的圖像,他首先列表(如下),但在填寫函數(shù)值時,不小心把其中一個蘸上了墨水(表中),那么這個被蘸上了墨水的函數(shù)值是()x…-10123…y…3430…A.-1 B.3 C.4 D.09.(2021·上海黃浦區(qū)·九年級一模)拋物線不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.(2021·上海寶山區(qū)·九年級一模)如圖所示是二次函數(shù)圖像的一部分,那么下列說法中不正確的是().A. B.拋物線的對稱軸為直線C. D.點和在拋物線上,則11.(2021·上海嘉定區(qū)·九年級期末)二次函數(shù)的圖像如圖所示,下列四個選項中,正確的是()A., B., C., D.,12.(2021·上海閔行區(qū)·九年級一模)如圖,在平面直角坐標系xOy中,二次函數(shù)圖象經過點,那么根據(jù)圖象,下列判斷正確的是()A. B. C. D.13.(2021·上海閔行區(qū)·九年級一模)下列函數(shù)中,是二次函數(shù)的是()A. B. C. D.14.(2021·上海嘉定區(qū)·九年級期末)拋物線的頂點坐標是()A. B. C. D.二、填空題15.(2021·上海徐匯區(qū)·九年級一模)已知二次函數(shù)的圖像在直線的左側部分是下降的,那么的取值范圍是_____.16.(2021·上海長寧區(qū)·九年級一模)將拋物線向下平移3個單位后,所得拋物線的表達式是_______________.17.(2021·上海市靜安區(qū)實驗中學九年級一模)拋物線在軸左側的部分是_______________.(填“上升”或“下降”)18.(2021·上海黃浦區(qū)·九年級一模)已知二次函數(shù)圖像經過點和,那么該二次函數(shù)圖像的對稱軸是直線________.19.(2021·上海寶山區(qū)·九年級一模)已知一條拋物線具有以下特征:(1)經過原點;(2)在軸左側的部分,圖像上升,在軸右側的部分,圖像下降;試寫出一個符合要求的拋物線的表達式:______.20.(2021·上海崇明區(qū)·九年級一模)函數(shù)的圖象與軸的交點的坐標為_________.21.(2021·上海松江區(qū)·九年級期末)一個邊長為2厘米的正方形,如果它的邊長增加厘米,則面積隨之增加y平方厘米,那么y關于x的函數(shù)解析式為____.22.(2021·上海奉賢區(qū)·九年級一模)如果二次函數(shù)的圖像經過點,那么的值為_______________________.23.(2021·上海虹口區(qū)·九年級一模)如果拋物線有最高點,那么的取值范圍是________.24.(2021·上海長寧區(qū)·九年級一模)已知拋物線經過點和,比較與的大?。篲____________(選擇“>”或“<”或“=”填入空格).25.(2021·上海市徐匯區(qū)教育學院九年級一模)已知拋物線,把該拋物線向上或向下平移,如果平移后的拋物線經過點,那么平移后的拋物線的表達式是______.26.(2021·上海市徐匯區(qū)教育學院九年級一模)已知拋物線的開口向上,那么a的取值范圍是______.27.(2021·上海黃浦區(qū)·九年級一模)如果拋物線的頂點為,那么該拋物線的頂點坐標是________.28.(2021·上海寶山區(qū)·九年級一模)如果拋物線(是常數(shù))的頂點坐標在第二象限,那么它的開口方向______.29.(2021·上海奉賢區(qū)·九年級一模)如果二次函數(shù)的圖像上有兩點和,那么_____(填“”、“”或“”)30.(2021·上海虹口區(qū)·九年級一模)沿著軸正方向看,拋物線在軸左側的部分是______的(填“上升”或“下降”).31.(2021·上海虹口區(qū)·九年級一模)如果拋物線經過點和,那么該拋物線的對稱軸是直線________.32.(2021·上海虹口區(qū)·九年級一模)如果拋物線經過點,那么的值是______.33.(2021·上海普陀區(qū)·九年級一模)如圖,已知二次函數(shù)的圖像經過點,那么________0.(填“”“”或“”)34.(2021·上海嘉定區(qū)·九年級期末)如果拋物線的頂點在x軸上,那么常數(shù)k為______.35.(2021·上海嘉定區(qū)·九年級期末)如果拋物線的對稱軸是直線,那么______0.(從<,=,>中選擇)36.(2021·上海嘉定區(qū)·九年級期末)二次函數(shù)的圖像與y軸的交點坐標為______.37.(2021·上海嘉定區(qū)·九年級期末)如果拋物線的開口向下,那么實數(shù)a的取值范圍是______.三、解答題38.(2021·上海黃浦區(qū)·九年級一模)將二次函數(shù)的圖像向右平移3個單位,求所得圖像的函數(shù)解析式:請結合以上兩個函數(shù)圖像,指出當自變量x在什么取值范圍內時,上述兩個函數(shù)中恰好其中一個的函數(shù)圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 獸藥檢驗員常識競賽考核試卷含答案
- 鑿巖臺車司機班組建設競賽考核試卷含答案
- 軟膏劑工復試測試考核試卷含答案
- 公司因傷請假條
- 2025年光刻膠配套試劑項目發(fā)展計劃
- 貓狗寵物店知識培訓課件
- 2026年特種鋼材與高溫合金材料項目公司成立分析報告
- 2026年智能門鎖防撬報警系統(tǒng)項目營銷方案
- 2025年山東省濰坊市中考生物真題卷含答案解析
- 基坑支護工程專項施工方案
- GB/T 45732-2025再生資源回收利用體系回收站點建設規(guī)范
- 無錫車聯(lián)天下信息技術有限公司智能網聯(lián)汽車車載顯示模組研發(fā)及智能化生產項目環(huán)評資料環(huán)境影響
- CJ/T 120-2016給水涂塑復合鋼管
- 抹灰層陰陽角方正度控制技術
- 中國特色社會主義知識點總結中職高考政治一輪復習
- 五年級數(shù)學下冊寒假作業(yè)每日一練
- 企業(yè)管理的基礎工作包括哪些內容
- 學?!?530”安全教育記錄表(2024年秋季全學期)
- 鋁合金門窗工程技術規(guī)范
- 食材配送服務方案投標文件(技術標)
- 室性心律失常
評論
0/150
提交評論