版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
陳經(jīng)綸中學(xué)2025年八年級數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.在Rt△ABC中,AC=BC,點D為AB中點.∠GDH=90°,∠GDH繞點D旋轉(zhuǎn),DG,DH分別與邊AC,BC交于E,F(xiàn)兩點.下列結(jié)論:①AE+BF=AC,②AE2+BF2=EF2,③S四邊形CEDF=S△ABC,④△DEF始終為等腰直角三角形.其中正確的是()A.①②③④ B.①②③ C.①④ D.②③2.甲、乙、丙三種糖果的售價分別為每千克6元、7元、8元,若將甲種8千克,乙種10千克,丙種3千克混在一起銷售,若要想銷售收入保持不變,則售價大概應(yīng)定為每千克()A.7元 B.6.8元 C.7.5元 D.8.6元3.如圖,在直角△ABC中,AB=9,BC=6,∠B=90°,將△ABC折疊,使A點與BC的中點D重合,折痕為MN,則線段AN的長為A.6 B.5 C.4 D.34.我市某小區(qū)實施供暖改造工程,現(xiàn)甲、乙兩工程隊分別同時開挖兩條600米長的管道,所挖管道長度y(米)與挖掘時間x(天)之間的關(guān)系如圖所示,則下列說法中,正確的個數(shù)有(
)個.①甲隊每天挖100米;②乙隊開挖兩天后,每天挖50米;③當x=4時,甲、乙兩隊所挖管道長度相同;④甲隊比乙隊提前2天完成任務(wù).A.1
B.2
C.3
D.45.計算a2a-b-bA.a(chǎn)-b B.a(chǎn)+b C.a(chǎn)2-b2 D.16.為改善城區(qū)居住環(huán)境,某市對4000米長的玉帶河進行了綠化改造.為了盡快完成工期,施工隊每天比原計劃多綠化10米,結(jié)果提前2天完成.若原計劃每天綠化米,則所列方程正確的是()A. B. C. D.7.如圖,在正方形ABCD的外側(cè),作等邊三角形ADE,則∠BED為()A.45° B.15° C.10° D.125°8.在相同時刻,物高與影長成正比.如果高為1.5米的標桿影長為2.5米,那么此時高為18米的旗桿的影長為()A.20米 B.30米 C.16米 D.15米9.如圖,在矩形ABCD中,AB=6,BC=8,E是BC邊上一點,將矩形沿AE折疊,點B落在點B'處,當△B'EC是直角三角形時,BE的長為()A.2 B.6 C.3或6 D.2或3或610.矩形一個內(nèi)角的平分線把矩形的一邊分成和,則矩形的周長為()A.和 B. C. D.以上都不對11.如圖,在?ABCD中,連接AC,∠ABC=∠CAD=45°,AB=,則BC的長是()A. B.2 C.2 D.412.不等式的解集是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,在中,,點是邊的中點,點在邊上運動,若平分的周長時,則的長是_______.14.在實數(shù)范圍內(nèi)定義一種運算“﹡”,其規(guī)則為a﹡b=a2﹣b2,根據(jù)這個規(guī)則,方程(x+1)﹡3=0的解為_____.15.如圖,在矩形ABCD中,AC,BD相交于點O,AE平分∠BAD交BC于點E,若∠CAE=15°,則∠BOE的度數(shù)為____________.16.如圖,在平行四邊形中,AD=2AB,平分交于點E,且,則平行四邊形的周長是____.17.對于三個數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的平均數(shù),用min{a,b,c}表示這三個數(shù)中最小的數(shù).例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.18.如圖,在正方形ABCD的右邊作等腰三角形ADE,AD=AE,,連BE,則__________.三、解答題(共78分)19.(8分)如圖,?ABCD中,AB=2cm,AC=5cm,S?ABCD=8cm2,E點從B點出發(fā),以1cm每秒的速度,在AB延長線上向右運動,同時,點F從D點出發(fā),以同樣的速度在CD延長線上向左運動,運動時間為t秒.(1)在運動過程中,四邊形AECF的形狀是____;(2)t=____時,四邊形AECF是矩形;(3)求當t等于多少時,四邊形AECF是菱形.20.(8分)如圖1,在平面直角坐標系中,一次函數(shù)的圖象與軸,軸分別交于點,點,過點作軸,垂足為點,過點作軸,垂足為點,兩條垂線相交于點.(1)線段,,的長分別為_______,_________,_________;(1)折疊圖1中的,使點與點重合,再將折疊后的圖形展開,折痕交于點,交于點,連接,如圖1.①求線段的長;②在軸上,是否存在點,使得為等腰三角形?若存在,請直接寫出符合條件的所有點的坐標;若不存在,請說明理由.21.(8分)如圖,E、F是平行四邊形ABCD的對角線AC上的兩點,AE=CF.求證:四邊形DEBF是平行四邊形.22.(10分)如圖,已知正方形ABCD的對角線AC、BD交于點O,CE⊥AC與AD邊的延長線交于點E.(1)求證:四邊形BCED是平行四邊形;(2)延長DB至點F,聯(lián)結(jié)CF,若CF=BD,求∠BCF的大?。?3.(10分)如圖,△ABC中AC=BC,點D,E在AB邊上,連接CD,CE.(1)如圖1,如果∠ACB=90°,把線段CD逆時針旋轉(zhuǎn)90°,得到線段CF,連接BF,①求證:△ACD≌△BCF;②若∠DCE=45°,求證:DE2=AD2+BE2;(2)如圖2,如果∠ACB=60°,∠DCE=30°,用等式表示AD,DE,BE三條線段的數(shù)量關(guān)系,說明理由.24.(10分)如圖1,在中,,,,以O(shè)B為邊,在外作等邊,D是OB的中點,連接AD并延長交OC于E.(1)求證:四邊形ABCE是平行四邊形;(2)連接AC,BE交于點P,求AP的長及AP邊上的高BH;(3)在(2)的條件下,將四邊形OABC置于如圖所示的平面直角坐標系中,以E為坐標原點,其余條件不變,以AP為邊向右上方作正方形APMN:①M點的坐標為.②直接寫出正方形APMN與四邊形OABC重疊部分的面積(圖中陰影部分).25.(12分)如果一組數(shù)據(jù)﹣1,0,2,3,x的極差為6(1)求x的值;(2)求這組數(shù)據(jù)的平均數(shù).26.某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計了15人某月的加工零件個數(shù):每人加工件數(shù)540450300240210120人數(shù)112632(1)寫出這15人該月加工零件數(shù)的平均數(shù)、中位數(shù)和眾數(shù).(2)若以本次統(tǒng)計所得的月加工零件數(shù)的平均數(shù)定為每位工人每月的生產(chǎn)定額,你認為這個定額是否合理,為什么?
參考答案一、選擇題(每題4分,共48分)1、A【解析】
連接CD根據(jù)等腰直角三角形的性質(zhì)就可以得出△ADE≌△CDF,就可以得出AE=CF,進而得出CE=BF,就有AE+BF=AC,由勾股定理就可以求出結(jié)論.【詳解】連接CD,∵AC=BC,點D為AB中點,∠ACB=90°,
∴AD=CD=BD=AB.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.
∴∠ADE+∠EDC=90°,
∵∠EDC+∠FDC=∠GDH=90°,
∴∠ADE=∠CDF.
在△ADE和△CDF中,∴△ADE≌△CDF(ASA),
∴AE=CF,DE=DF,S△ADE=S△CDF.
∵AC=BC,
∴AC-AE=BC-CF,
∴CE=BF.
∵AC=AE+CE,
∴AC=AE+BF.
∵DE=DF,∠GDH=90°,
∴△DEF始終為等腰直角三角形.
∵CE1+CF1=EF1,
∴AE1+BF1=EF1.
∵S四邊形CEDF=S△EDC+S△EDF,
∴S四邊形CEDF=S△EDC+S△ADE=S△ABC.
∴正確的有①②③④.
故選A.【點睛】本題考查了等腰直角三角形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,勾股定理的運用,解題關(guān)鍵是證明△ADE≌△CDF.2、B【解析】
根據(jù)加權(quán)平均數(shù)的計算方法:先求出所有糖果的總錢數(shù),再除以糖果的總質(zhì)量,即可得出答案.【詳解】解:售價應(yīng)定為:(元);故選:B【點睛】本題考查的是加權(quán)平均數(shù)的求法,本題易出現(xiàn)的錯誤是對加權(quán)平均數(shù)的理解不正確,而求6,7,8這三個數(shù)的平均數(shù).3、B【解析】
設(shè),由翻折的性質(zhì)可知,則,在中利用勾股定理列方程求解即可.【詳解】解:設(shè),由翻折的性質(zhì)可知,則.是BC的中點,.在中,由勾股定理得:,即,解得:..故選:B.【點睛】本題主要考查的是翻折的性質(zhì)、勾股定理的應(yīng)用,由翻折的性質(zhì)得到,,從而列出關(guān)于x的方程是解題的關(guān)鍵.4、D【解析】
從圖象可以看出甲隊完成工程的時間不到6天,故工作效率為100米,乙隊挖2天后還剩300米,4天完成了200米,故每天是50米,當x=4時,甲隊完成400米,乙隊完成400米,甲隊完成所用時間是6天,乙隊是8天,通過以上的計算就可以得出結(jié)論.【詳解】由圖象,得①600÷6=100米/天,故①正確;②(500?300)÷4=50米/天,故②正確;③甲隊4天完成的工作量是:100×4=400米,乙隊4天完成的工作量是:300+2×50=400米,∵400=400,∴當x=4時,甲、乙兩隊所挖管道長度相同,故③正確;④由圖象得甲隊完成600米的時間是6天,乙隊完成600米的時間是:2+300÷50=8天,∵8?6=2天,∴甲隊比乙隊提前2天完成任務(wù),故④正確;故答案為①②③④5、B【解析】
原式利用同分母分式的減法法則計算,約分即可得到結(jié)果.【詳解】a2a-b-故選:B.【點睛】考查了分式的加減法,熟練掌握運算法則是解本題的關(guān)鍵.6、A【解析】
原計劃每天綠化x米,則實際每天綠化(x+10)米,根據(jù)結(jié)果提前2天完成即可列出方程.【詳解】原計劃每天綠化x米,則實際每天綠化(x+10)米,由題意得,,故選A.【點睛】本題考查了分式方程的應(yīng)用,弄清題意,找準等量關(guān)系列出方程是解題的關(guān)鍵.7、A【解析】
由等邊三角形的性質(zhì)可得,進而可得,又因為,結(jié)合等腰三角形的性質(zhì),易得的大小,進而可求出的度數(shù).【詳解】是等邊三角形,,,四邊形是正方形,,,,,,.
故選:.【點睛】本題考查了正方形的性質(zhì),等邊三角形的性質(zhì),三角形的內(nèi)角和定理,等腰三角形的性質(zhì)和判定的應(yīng)用,解此題的關(guān)鍵是求出的度數(shù),難度適中.8、B【解析】
設(shè)此時高為18米的旗桿的影長為xm,利用“在同一時刻物高與影長的比相等”列出比例式,進而即可求解.【詳解】設(shè)此時高為18米的旗桿的影長為xm,根據(jù)題意得:=,解得:x=30,∴此時高為18米的旗桿的影長為30m.故選:B.【點睛】本題考查了相似三角形的應(yīng)用,掌握相似三角形的性質(zhì)和“在同一時刻物高與影長的比相等”的原理,是解題的關(guān)鍵.9、C【解析】
分以下兩種情況求解:①當點B′落在矩形內(nèi)部時,連接AC,先利用勾股定理計算出AC=10,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當△B′EC為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=1,可計算出CB′=4,設(shè)BE=x,則EB′=x,CE=8﹣x,然后在Rt△CEB′中運用勾股定理可計算出x.②當點B′落在AD邊上時.此時四邊形ABEB′為正方形,求出BE的長即可.【詳解】解:當△B′EC為直角三角形時,有兩種情況:①當點B′落在矩形內(nèi)部時,如圖1所示.連結(jié)AC,在Rt△ABC中,AB=1,BC=8,∴AC==10,∵∠B沿AE折疊,使點B落在點B′處,∴∠AB′E=∠B=90°,當△B′EC為直角三角形時,得到∠EB′C=90°,∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,如圖,∴EB=EB′,AB=AB′=1,∴CB′=10﹣1=4,設(shè)BE=x,則EB′=x,CE=8﹣x,在Rt△B′EC中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②當點B′落在AD邊上時,如圖2所示.此時ABEB′為正方形,∴BE=AB=1.綜上所述,BE的長為3或1.故選:C.【點睛】本題考查了折疊變換的性質(zhì)、直角三角形的性質(zhì)、矩形的性質(zhì),正方形的判定等知識;熟練掌握折疊變換的性質(zhì),由勾股定理得出方程是解題的關(guān)鍵.10、A【解析】
利用角平分線得到∠ABE=∠CBE,矩形對邊平行得到∠AEB=∠CBE.那么可得到∠ABE=∠AEB,可得到AB=AE.那么根據(jù)AE的不同情況得到矩形各邊長,進而求得周長.【詳解】∵矩形ABCD中BE是角平分線.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE.∴AB=AE.平分線把矩形的一邊分成3cm和5cm.當AE=3cm時:則AB=CD=3cm,AD=CB=8cm則矩形的周長是:22cm;當AE=5cm時:AB=CD=5cm,AD=CB=8cm,則周長是:26cm.故選A.【點睛】本題主要運用了矩形性質(zhì),角平分線的定義和等角對等邊知識,正確地進行分情況討論是解題的關(guān)鍵.11、B【解析】
根據(jù)平行四邊形的性質(zhì)可得出CD=AB=、∠D=∠CAD=45°,由等角對等邊可得出AC=CD=,再利用勾股定理即可求出BC的長度.【詳解】∵四邊形ABCD是平行四邊形,∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==1.故選:B.【點睛】本題考查了平行四邊形的性質(zhì)、等腰三角形的性質(zhì)以及勾股定理,根據(jù)平行四邊形的性質(zhì)結(jié)合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解題的關(guān)鍵.12、C【解析】試題分析:移項得,,兩邊同時除以2得,.故選C.考點:解一元一次不等式.二、填空題(每題4分,共24分)13、【解析】
延長CA至M,使AM=AB,連接BM,作AN⊥BM于N,由DE平分△ABC的周長,又CD=DB,得到ME=EC,根據(jù)中位線的性質(zhì)可得DE=BM,再求出BM的長即可得到結(jié)論.【詳解】解:延長CA至M,使AM=AB,連接BM,作AN⊥BM于N,
∵DE平分△ABC的周長,CD=DB,
∴ME=EC,
∴DE=BM,
∵∠BAC=60°,
∴∠BAM=120°,
∵AM=AB,AN⊥BM,
∴∠BAN=60°,BN=MN,∴∠ABN=30°,∴AN=AB=1,∴BN=,
∴BM=2,
∴DE=,
故答案為:.【點睛】本題考查了三角形的中位線的性質(zhì),等腰三角形的性質(zhì),含30°的直角三角形的性質(zhì)以及勾股定理等知識點,作出輔助線綜合運用基本性質(zhì)進行推理是解題的關(guān)鍵.14、x=2、-4【解析】
先根據(jù)新定義得到,再移項得,然后利用直接開平方法求解.【詳解】(x+1)﹡3=0,,,,所以、.故答案為:、.【點睛】本題考查了解一元二次方程-直接開平方法:如果方程化成的形式,那么可得,如果方程能化成()的形式,那么.15、【解析】
由矩形ABCD,得到OA=OB,根據(jù)AE平分∠BAD,得到等邊三角形OAB,推出AB=OB,求出∠OAB、∠OBC的度數(shù),根據(jù)平行線的性質(zhì)和等角對等邊得到OB=BE,根據(jù)三角形的內(nèi)角和定理即可求出答案.【詳解】解:∵四邊形ABCD是矩形,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠CAE=15°,∴∠DAC=45°-15°=30°,∠BAC=60°,∴△BAO是等邊三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°-60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=故答案為75°.【點睛】本題主要考查了三角形的內(nèi)角和定理,矩形的性質(zhì),等邊三角形的性質(zhì)和判定,平行線的性質(zhì),角平分線的性質(zhì),等腰三角形的判定等知識點,解此題的關(guān)鍵是求出∠OBC的度數(shù)和求OB=BE.16、18【解析】
利用平行四邊形的對邊相等且互相平行,進而得出AE=DE=AB,再求出ABCD的周長【詳解】∵CE平分∠BCD交AD邊于點E,∴.∠ECD=∠ECB∵在平行四邊形ABCD中、AD∥BC,AB=CD,AD=BC∴∠DEC=∠ECB,∴∠DEC=∠DCE∴DE=DC∵AD=2AB∴AD=2CD∴AE=DE=AB=3∴AD=6∴四邊形ABCD的周長為:2×(3+6)=18.故答案為:18.【點睛】此題考查平行四邊形的性質(zhì),解題關(guān)鍵在于利用平行四邊形的對邊相等且互相平行17、或【解析】【分析】根據(jù)題中的運算規(guī)則得到M{3,2x+1,4x-1}=1+2x,然后再根據(jù)min{2,-x+3,5x}的規(guī)則分情況討論即可得.【詳解】M{3,2x+1,4x-1}==2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三種情況:①2x+1=2,x=,此時min{2,-x+3,5x}=min{2,,}=2,成立;②2x+1=-x+3,x=,此時min{2,-x+3,5x}=min{2,,}=2,不成立;③2x+1=5x,x=,此時min{2,-x+3,5x}=min{2,,}=,成立,∴x=或,故答案為或.【點睛】本題考查了閱讀理解題,一元一次方程的應(yīng)用,分類討論思想的運用等,解決問題的關(guān)鍵是讀懂題意,依題意分情況列出一元一次方程進行求解.18、45°【解析】
先證明AB=AE,求得∠AEB,由AD=AE,∠DAE=50°,求得∠AED,進而由角的和差關(guān)系求得結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,∵AD=AE,∠DAE=50°,∴AB=AE,∠ADE=∠AED=65°,∠BAE=140°,∴∠ABE=∠AEB=20°,∴∠BED=65°?20°=45°,故答案為:45°.【點睛】本題主要考查了正方形的性質(zhì),等腰三角形的性質(zhì),三角形內(nèi)角和定理,關(guān)鍵是求得∠AEB和∠AED的度數(shù).三、解答題(共78分)19、(1)四邊形AECF是平行四邊形;理由見解析;(2)t=1;(3)t=【解析】
(1)由平行四邊形的性質(zhì)得出AB=CD=2cm,AB∥CD,由已知條件得出CF=AE,即可得出四邊形AECF是平行四邊形;(2)若四邊形AECF是矩形,則∠AFC=90°,得出AF⊥CD,由平行四邊形的面積得出AF=4cm,在Rt△ACF中,由勾股定理得出方程,解方程即可;(3)當AE=CE時,四邊形AECF是菱形.過C作CG⊥BE于G,則CG=4cm,由勾股定理求出AG,得出GE,由勾股定理得出方程,解方程即可.【詳解】解:(1)四邊形AECF是平行四邊形;理由如下:∵四邊形ABCD是平行四邊形,∴AB=CD=2cm,AB∥CD,∴CF∥AE,∵DF=BE,∴CF=AE,∴四邊形AECF是平行四邊形;故答案為:平行四邊形;(2)t=1時,四邊形AECF是矩形;理由如下:若四邊形AECF是矩形,∴∠AFC=90°,∴AF⊥CD,∵S?ABCD=CD?AF=8cm2,∴AF=4cm,在Rt△ACF中,AF2+CF2=AC2,即42+(t+2)2=52,解得:t=1,或t=-5(舍去),∴t=1;故答案為:1;(3)依題意得:AE平行且等于CF,∴四邊形AECF是平行四邊形,故AE=CE時,四邊形AECF是菱形.又∵BE=tcm,∴AE=CE=t+2(cm),過C作CG⊥BE于G,如圖所示:則CG=4cmAG==3(cm),∴GE=t+2-3=t-1(cm),在△CGE中,由勾股定理得:CG2+GE2=CE2=AE2,即42+(t-1)2=(t+2)2,解得:t=,即t=s時,四邊形AECF是菱形.【點睛】本題考查了平行四邊形的性質(zhì)與判定、菱形的判定、矩形的判定、勾股定理等知識;熟練掌握平行四邊形的性質(zhì),由勾股定理得出方程是解決問題的關(guān)鍵.20、(1)8;4;;(1)①線段AD的長為2;②點P的坐標為(0,3)或(0,-3)或(0,1)或(0,8)或(0,).【解析】
(1)利用一次函數(shù)圖象上點的坐標特征可求出點A,C的坐標,利用矩形的性質(zhì)及勾股定理,可得出AB,BC,AC的長;
(1)①設(shè)AD=a,則CD=a,BD=8-a,在Rt△BCD中,利用勾股定理可求出a的值,進而可得出線段AD的長;
②設(shè)點P的坐標為(0,t),利用兩點間的距離公式可求出AD1,AP1,DP1的值,分AP=AD,AD=DP及AP=DP三種情況,可得出關(guān)于t的一元二次方程(或一元一次方程),解之即可得出t的值,進而可得出點P的坐標.【詳解】解:(1)如圖:當x=0時,y=-1x+8=8,
∴點C的坐標為(0,8);
當y=0時,-1x+8=0,解得:x=4,
∴點A的坐標為(4,0).
由已知可得:四邊形OABC為矩形,
∴AB=OC=8,BC=OA=4,AC=.
故答案為:8;4;.
(1)①設(shè)AD=a,則CD=a,BD=8-a.
在Rt△BCD中,CD1=BC1+BD1,即a1=3+(8-a)1,
解得:a=2,
∴線段AD的長為2.②存在,如圖:設(shè)點P的坐標為(0,t).
∵點A的坐標為(4,0),點D的坐標為(4,2),
∴AD1=12,AP1=(0-4)1+(t-0)1=t1+16,DP1=(0-4)1+(t-2)1=t1-10t+3.
當AP=AD時,t1+16=12,
解得:t=±3,
∴點P的坐標為(0,3)或(0,-3);
當AD=DP時,12=t1-10t+3,
解得:t1=1,t1=8,
∴點P的坐標為(0,1)或(0,8);
當AP=DP時,t1+16=t1-10t+3,
解得:t=,
∴點P的坐標為(0,).
綜上所述:在y軸上存在點P,使得△APD為等腰三角形,點P的坐標為(0,3)或(0,-3)或(0,1)或(0,8)或(0,).【點睛】本題考查了一次函數(shù)圖象上點的坐標特征、矩形的性質(zhì)、勾股定理、等腰三角形的性質(zhì)、兩點間的距離以及解一元二次方程(或解一元一次方程),解題的關(guān)鍵是:(1)利用一次函數(shù)圖象上點的坐標特征求出點A,C的坐標;(1)①通過解直角三角形,求出AD的長;②分AP=AD,AD=DP及AP=DP三種情況,找出關(guān)于t的一元二次方程(或一元一次方程).21、證明見解析【解析】
證明:連接BD,交AC于點O,根據(jù)四邊形ABCD是平行四邊形,得到OA=OC,OB=OD,由此推出OE=OF,利用對角線互相平分的四邊形是平行四邊形即可得到結(jié)論.【詳解】連接BD,交AC于點O,∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∵OE=OF,OB=OD∴四邊形DEBF是平行四邊形.【點睛】此題考查平行四邊形的性質(zhì)及判定,熟記判定定理及性質(zhì)定理是解題的關(guān)鍵.22、(1)見解析;(2)∠BCF=15°【解析】
(1)利用正方形的性質(zhì)得出AC⊥DB,BC//AD,再利用平行線的判定與性質(zhì)結(jié)合平行四邊形的判定方法得出答案;(2)利用正方形的性質(zhì)結(jié)合直角三角形的性質(zhì)得出∠OFC=30°,即可得出答案.【詳解】解:(1)證明:∵ABCD是正方形,∴AC⊥DB,BC∥AD∵CE⊥AC∴∠AOD=∠ACE=90°∴BD∥CE∴BCED是平行四邊形(2)如圖:連接AF,∵ABCD是正方形,∴BD⊥AC,BD=AC=2OB=2OC,即OB=OC∴∠OCB=45°∵Rt△OCF中,CF=BD=2OC,∴∠OFC=30°∴∠BCF=60°-45°=15°【點睛】本題考查了正方形的性質(zhì)以及平行四邊形的判定和直角三角形的性質(zhì),掌握正方形的性質(zhì)是解題關(guān)鍵.23、(1)①詳見解析;②詳見解析;(2)DE2=EB2+AD2+EB·AD,證明詳見解析【解析】
(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)可得CF=CD,∠DCF=90°,再根據(jù)已知條件即可證明△ACD≌△BCF;②連接EF,根據(jù)①中全等三角形的性質(zhì)可得∠EBF=90°,再證明△DCE≌△FCE得到EF=DE即可證明;(2)根據(jù)(1)中的思路作出輔助線,通過全等三角形的判定及性質(zhì)得出相等的邊,再由勾股定理得出AD,DE,BE之間的關(guān)系.【詳解】解:(1)①證明:由旋轉(zhuǎn)可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②證明:連接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2=AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如圖2,將△ADC繞點C逆時針旋轉(zhuǎn)60°,得到△CBF,過點F作FG⊥AB,交AB的延長線于點G,連接EF,∴∠CBE=∠CAD,∠BCF=∠ACD,BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA=60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=BF,F(xiàn)G=BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+BF,∴EF2=(EB+BF)2+(BF)2∴DE2=(EB+AD)2+(AD)2∴DE2=EB2+AD2+EB·AD【點睛】本題考查了全等三角形的性質(zhì)與旋轉(zhuǎn)模型,解題的關(guān)鍵是找出全等三角形,轉(zhuǎn)換線段,并通過勾股定理的計算得出線段之間的關(guān)系.24、(1)見解析;(2),;(3)①;②【解析】
(1)利用直角三角形斜邊中線的性質(zhì)可得DO=DA,推出∠AEO=60°,進一步得出BC∥AE,CO∥AB,可得結(jié)論;
(2)先計算出OA=,推出PB=,利用勾股定理求出AP=,再利用面積法計算BH即可;
(3)①求出直線PM的解析式為y=x-3,再利用兩點間的距離公式計算即可;
②易得直線BC的解析式為y=x+4,聯(lián)立直線BC和直線PM的解析式成方程組,求得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025四川德陽綿竹市什地鎮(zhèn)衛(wèi)生院非全日制工作人員招聘4人筆試重點試題及答案解析
- 房車借車合同范本
- 小廠退股協(xié)議書
- 幼犬購買協(xié)議書
- 小孩病儀協(xié)議書
- 征遷協(xié)議書樣本
- 藥品保證協(xié)議書
- 幼兒供貨協(xié)議書
- 資料訂購協(xié)議書
- 贈予繼承協(xié)議書
- 火災(zāi)自動報警系統(tǒng)故障應(yīng)急預(yù)案
- 人貨電梯施工方案
- 南大版一年級心理健康第7課《情緒小世界》課件
- 光大金甌資產(chǎn)管理有限公司筆試
- 算力產(chǎn)業(yè)園項目計劃書
- 塔式起重機安全管理培訓(xùn)課件
- 老年髖部骨折快速康復(fù)治療
- 【初中地理】跨學(xué)科主題學(xué)習探 索外來食料作物的傳播史課件-2024-2025學(xué)年七年級上學(xué)期(人教版2024)
- 四川省南充市2024-2025學(xué)年高一地理上學(xué)期期末考試試題含解析
- 化學(xué)品管理控制程序
- 探索·鄱陽湖智慧樹知到期末考試答案2024年
評論
0/150
提交評論