版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年四川省宜賓市中考聯(lián)考數(shù)學(xué)試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.估計5﹣的值應(yīng)在()A.5和6之間 B.6和7之間 C.7和8之間 D.8和9之間2.的算術(shù)平方根是()A.9 B.±9 C.±3 D.33.已知如圖,△ABC為直角三角形,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.315° B.270° C.180° D.135°4.已知圓內(nèi)接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.5.如圖,是在直角坐標(biāo)系中圍棋子擺出的圖案,若再擺放一黑一白兩枚棋子,使9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則這兩枚棋子的坐標(biāo)是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)6.兩個有理數(shù)的和為零,則這兩個數(shù)一定是()A.都是零 B.至少有一個是零C.一個是正數(shù),一個是負(fù)數(shù) D.互為相反數(shù)7.如圖,在平面直角坐標(biāo)系中,把△ABC繞原點(diǎn)O旋轉(zhuǎn)180°得到△CDA,點(diǎn)A,B,C的坐標(biāo)分別為(﹣5,2),(﹣2,﹣2),(5,﹣2),則點(diǎn)D的坐標(biāo)為()A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)8.估計的值在()A.4和5之間 B.5和6之間 C.6和7之間 D.7和8之間9.如圖,在矩形ABCD中,AB=2a,AD=a,矩形邊上一動點(diǎn)P沿A→B→C→D的路徑移動.設(shè)點(diǎn)P經(jīng)過的路徑長為x,PD2=y,則下列能大致反映y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.10.根據(jù)下表中的二次函數(shù)的自變量與函數(shù)的對應(yīng)值,可判斷該二次函數(shù)的圖象與軸().
…
…
…
…A.只有一個交點(diǎn) B.有兩個交點(diǎn),且它們分別在軸兩側(cè)C.有兩個交點(diǎn),且它們均在軸同側(cè) D.無交點(diǎn)二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直徑為1000mm的圓柱形水管有積水(陰影部分),水面的寬度AB為800mm,則水的最大深度CD是______mm.12.分解因式:3x3﹣27x=_____.13.如圖,某水庫大壩的橫斷面是梯形,壩頂寬米,壩高是20米,背水坡的坡角為30°,迎水坡的坡度為1∶2,那么壩底的長度等于________米(結(jié)果保留根號)14.若關(guān)于x的一元二次方程x2+mx+2n=0有一個根是2,則m+n=_____.15.一艘貨輪以182km/h的速度在海面上沿正東方向航行,當(dāng)行駛至A處時,發(fā)現(xiàn)它的東南方向有一燈塔B,貨輪繼續(xù)向東航行30分鐘后到達(dá)C處,發(fā)現(xiàn)燈塔B在它的南偏東15°方向,則此時貨輪與燈塔B的距離是________km.16.從﹣2,﹣1,1,2四個數(shù)中,隨機(jī)抽取兩個數(shù)相乘,積為大于﹣4小于2的概率是_____.三、解答題(共8題,共72分)17.(8分)在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),點(diǎn)B(0,2),點(diǎn)O(0,0).△AOB繞著O順時針旋轉(zhuǎn),得△A′OB′,點(diǎn)A、B旋轉(zhuǎn)后的對應(yīng)點(diǎn)為A′、B′,記旋轉(zhuǎn)角為α.(I)如圖1,若α=30°,求點(diǎn)B′的坐標(biāo);(Ⅱ)如圖2,若0°<α<90°,設(shè)直線AA′和直線BB′交于點(diǎn)P,求證:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的點(diǎn)P縱坐標(biāo)的最小值(直接寫出結(jié)果即可).18.(8分)已知PA與⊙O相切于點(diǎn)A,B、C是⊙O上的兩點(diǎn)(1)如圖①,PB與⊙O相切于點(diǎn)B,AC是⊙O的直徑若∠BAC=25°;求∠P的大?。?)如圖②,PB與⊙O相交于點(diǎn)D,且PD=DB,若∠ACB=90°,求∠P的大小19.(8分)如圖,在中,,是角平分線,平分交于點(diǎn),經(jīng)過兩點(diǎn)的交于點(diǎn),交于點(diǎn),恰為的直徑.求證:與相切;當(dāng)時,求的半徑.20.(8分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時,橋洞與水面的最大距離是5m.經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點(diǎn)坐標(biāo)是,求出你所選方案中的拋物線的表達(dá)式;因?yàn)樯嫌嗡畮煨购?,水面寬度變?yōu)?m,求水面上漲的高度.21.(8分)如圖所示,某工程隊準(zhǔn)備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為37°,塔底B的仰角為26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,圖中的點(diǎn)O、B、C、A、P在同一平面內(nèi),求山坡的坡度.(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)22.(10分)如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)與一次函數(shù)的圖像交于點(diǎn)A,(1)求點(diǎn)A的坐標(biāo);(2)設(shè)x軸上一點(diǎn)P(a,0),過點(diǎn)P作x軸的垂線(垂線位于點(diǎn)A的右側(cè)),分別交和的圖像于點(diǎn)B、C,連接OC,若BC=OA,求△OBC的面積.23.(12分)我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學(xué)校決賽,兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.平均分(分)中位數(shù)(分)眾數(shù)(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據(jù)圖示計算出a、b、c的值;結(jié)合兩隊成績的平均數(shù)和中位數(shù)進(jìn)行分析,哪個隊的決賽成績較好?計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩(wěn)定.24.如圖,AB是⊙O的直徑,BE是弦,點(diǎn)D是弦BE上一點(diǎn),連接OD并延長交⊙O于點(diǎn)C,連接BC,過點(diǎn)D作FD⊥OC交⊙O的切線EF于點(diǎn)F.(1)求證:∠CBE=∠F;(2)若⊙O的半徑是2,點(diǎn)D是OC中點(diǎn),∠CBE=15°,求線段EF的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
先化簡二次根式,合并后,再根據(jù)無理數(shù)的估計解答即可.【詳解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值應(yīng)在7和8之間,故選C.【點(diǎn)睛】本題考查了估算無理數(shù)的大小,解決本題的關(guān)鍵是估算出無理數(shù)的大?。?、D【解析】
根據(jù)算術(shù)平方根的定義求解.【詳解】∵=9,
又∵(±1)2=9,
∴9的平方根是±1,
∴9的算術(shù)平方根是1.
即的算術(shù)平方根是1.
故選:D.【點(diǎn)睛】考核知識點(diǎn):算術(shù)平方根.理解定義是關(guān)鍵.3、B【解析】
利用三角形內(nèi)角與外角的關(guān)系:三角形的任一外角等于和它不相鄰的兩個內(nèi)角之和解答.【詳解】如圖,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故選B.【點(diǎn)睛】此題主要考查了三角形內(nèi)角與外角的關(guān)系:三角形的任一外角等于和它不相鄰的兩個內(nèi)角之和.4、B【解析】
根據(jù)題意畫出圖形,連接AO并延長交BC于點(diǎn)D,則AD⊥BC,設(shè)OD=x,由三角形重心的性質(zhì)得AD=3x,利用銳角三角函數(shù)表示出BD的長,由垂徑定理表示出BC的長,然后根據(jù)面積法解答即可.【詳解】如圖,連接AO并延長交BC于點(diǎn)D,則AD⊥BC,設(shè)OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內(nèi)接正三邊形的邊心距為1,故選B.【點(diǎn)睛】本題考查正多邊形和圓,三角形重心的性質(zhì),垂徑定理,銳角三角函數(shù),面積法求線段的長,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.5、A【解析】
首先根據(jù)各選項棋子的位置,進(jìn)而結(jié)合軸對稱圖形和中心對稱圖形的性質(zhì)判斷得出即可.【詳解】解:A、當(dāng)擺放黑(3,3),白(3,1)時,此時是軸對稱圖形,也是中心對稱圖形,故此選項正確;B、當(dāng)擺放黑(3,1),白(3,3)時,此時是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、當(dāng)擺放黑(1,5),白(5,5)時,此時不是軸對稱圖形也不是中心對稱圖形,故此選項錯誤;D、當(dāng)擺放黑(3,2),白(3,3)時,此時是軸對稱圖形不是中心對稱圖形,故此選項錯誤.故選:A.【點(diǎn)睛】此題主要考查了坐標(biāo)確定位置以及軸對稱圖形與中心對稱圖形的性質(zhì),利用已知確定各點(diǎn)位置是解題關(guān)鍵.6、D【解析】解:互為相反數(shù)的兩個有理數(shù)的和為零,故選D.A、C不全面.B、不正確.7、A【解析】分析:依據(jù)四邊形ABCD是平行四邊形,即可得到BD經(jīng)過點(diǎn)O,依據(jù)B的坐標(biāo)為(﹣2,﹣2),即可得出D的坐標(biāo)為(2,2).詳解:∵點(diǎn)A,C的坐標(biāo)分別為(﹣5,2),(5,﹣2),∴點(diǎn)O是AC的中點(diǎn),∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形,∴BD經(jīng)過點(diǎn)O,∵B的坐標(biāo)為(﹣2,﹣2),∴D的坐標(biāo)為(2,2),故選A.點(diǎn)睛:本題主要考查了坐標(biāo)與圖形變化,圖形或點(diǎn)旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點(diǎn)的坐標(biāo).8、C【解析】∵,∴.即的值在6和7之間.故選C.9、D【解析】解:(1)當(dāng)0≤t≤2a時,∵,AP=x,∴;(2)當(dāng)2a<t≤3a時,CP=2a+a﹣x=3a﹣x,∵,∴=;(3)當(dāng)3a<t≤5a時,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;綜上,可得,∴能大致反映y與x的函數(shù)關(guān)系的圖象是選項D中的圖象.故選D.10、B【解析】
根據(jù)表中數(shù)據(jù)可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據(jù)拋物線的對稱性即可作出判斷.【詳解】解:由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上則該二次函數(shù)的圖像與軸有兩個交點(diǎn),且它們分別在軸兩側(cè)故選B.【點(diǎn)睛】本題考查二次函數(shù)的性質(zhì),屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握拋物線的對稱性,即可完成.二、填空題(本大題共6個小題,每小題3分,共18分)11、200【解析】
先求出OA的長,再由垂徑定理求出AC的長,根據(jù)勾股定理求出OC的長,進(jìn)而可得出結(jié)論.【詳解】解:∵⊙O的直徑為1000mm,
∴OA=OA=500mm.
∵OD⊥AB,AB=800mm,
∴AC=400mm,
∴OC===300mm,∴CD=OD-OC=500-300=200(mm).
答:水的最大深度為200mm.故答案為:200【點(diǎn)睛】本題考查的是垂徑定理的應(yīng)用,根據(jù)勾股定理求出OC的長是解答此題的關(guān)鍵.12、3x(x+3)(x﹣3).【解析】
首先提取公因式3x,再進(jìn)一步運(yùn)用平方差公式進(jìn)行因式分解.【詳解】3x3﹣27x=3x(x2﹣9)=3x(x+3)(x﹣3).【點(diǎn)睛】本題考查用提公因式法和公式法進(jìn)行因式分解的能力.一個多項式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時因式分解要徹底,直到不能分解為止.13、【解析】
過梯形上底的兩個頂點(diǎn)向下底引垂線、,得到兩個直角三角形和一個矩形,分別解、求得線段、的長,然后與相加即可求得的長.【詳解】如圖,作,,垂足分別為點(diǎn)E,F(xiàn),則四邊形是矩形.由題意得,米,米,,斜坡的坡度為1∶2,在中,∵,∴米.在Rt△DCF中,∵斜坡的坡度為1∶2,∴,∴米,∴(米).∴壩底的長度等于米.故答案為.【點(diǎn)睛】此題考查了解直角三角形的應(yīng)用﹣坡度坡角問題,難度適中,解答本題的關(guān)鍵是構(gòu)造直角三角形和矩形,注意理解坡度與坡角的定義.14、﹣1【解析】
根據(jù)一元二次方程的解的定義把x=1代入x1+mx+1n=0得到4+1m+1n=0得n+m=?1,然后利用整體代入的方法進(jìn)行計算.【詳解】∵1(n≠0)是關(guān)于x的一元二次方程x1+mx+1n=0的一個根,∴4+1m+1n=0,∴n+m=?1,故答案為?1.【點(diǎn)睛】本題考查了一元二次方程的解(根):能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因?yàn)橹缓幸粋€未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.15、1【解析】
作CE⊥AB于E,根據(jù)題意求出AC的長,根據(jù)正弦的定義求出CE,根據(jù)三角形的外角的性質(zhì)求出∠B的度數(shù),根據(jù)正弦的定義計算即可.【詳解】作CE⊥AB于E,12km/h×30分鐘=92km,∴AC=92km,∵∠CAB=45°,∴CE=AC?sin45°=9km,∵燈塔B在它的南偏東15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC=CEsin∠B=故答案為:1.【點(diǎn)睛】本題考查的是解直角三角形的應(yīng)用-方向角問題,正確標(biāo)注方向角、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.16、【解析】
列表得出所有等可能結(jié)果,從中找到積為大于-4小于2的結(jié)果數(shù),根據(jù)概率公式計算可得.【詳解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結(jié)果,其中積為大于-4小于2的有6種結(jié)果,∴積為大于-4小于2的概率為=,故答案為.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共8題,共72分)17、(1)B'的坐標(biāo)為(,3);(1)見解析;(3)﹣1.【解析】
(1)設(shè)A'B'與x軸交于點(diǎn)H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)證明∠BPA'=90即可;(3)作AB的中點(diǎn)M(1,),連接MP,由∠APB=90°,推出點(diǎn)P的軌跡為以點(diǎn)M為圓心,以MP=AB=1為半徑的圓,除去點(diǎn)(1,),所以當(dāng)PM⊥x軸時,點(diǎn)P縱坐標(biāo)的最小值為﹣1.【詳解】(Ⅰ)如圖1,設(shè)A'B'與x軸交于點(diǎn)H,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=1,∴OH=OB'=,B'H=3,∴點(diǎn)B'的坐標(biāo)為(,3);(Ⅱ)證明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四邊形OBPA'的內(nèi)角和為360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)點(diǎn)P縱坐標(biāo)的最小值為.如圖,作AB的中點(diǎn)M(1,),連接MP,∵∠APB=90°,∴點(diǎn)P的軌跡為以點(diǎn)M為圓心,以MP=AB=1為半徑的圓,除去點(diǎn)(1,).∴當(dāng)PM⊥x軸時,點(diǎn)P縱坐標(biāo)的最小值為﹣1.【點(diǎn)睛】本題考查的知識點(diǎn)是幾何變換綜合題,解題的關(guān)鍵是熟練的掌握幾何變換綜合題.18、(1)∠P=50°;(2)∠P=45°.【解析】
(1)連接OB,根據(jù)切線長定理得到PA=PB,∠PAO=∠PBO=90°,根據(jù)三角形內(nèi)角和定理計算即可;
(2)連接AB、AD,根據(jù)圓周角定理得到∠ADB=90°,根據(jù)切線的性質(zhì)得到AB⊥PA,根據(jù)等腰直角三角形的性質(zhì)解答.【詳解】解:(1)如圖①,連接OB.∵PA、PB與⊙O相切于A、B點(diǎn),∴PA=PB,∴∠PAO=∠PBO=90°∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=∠PAB=90°一∠BAC=65°∴∠P=180°-∠PAB-∠PBA=50°;(2)如圖②,連接AB、AD,∵∠ACB=90°,∴AB是的直徑,∠ADB=90·∵PD=DB,∴PA=AB.∵PA與⊙O相切于A點(diǎn)∴AB⊥PA,∴∠P=∠ABP=45°.【點(diǎn)睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于過切點(diǎn)的半徑是解題的關(guān)鍵.19、(1)證明見解析;(2).【解析】
(1)連接OM,證明OM∥BE,再結(jié)合等腰三角形的性質(zhì)說明AE⊥BE,進(jìn)而證明OM⊥AE;(2)結(jié)合已知求出AB,再證明△AOM∽△ABE,利用相似三角形的性質(zhì)計算.【詳解】(1)連接OM,則OM=OB,∴∠1=∠2,∵BM平分∠ABC,∴∠1=∠3,∴∠2=∠3,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∵點(diǎn)M在圓O上,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=4,cosC=∴BE=2,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB==6,設(shè)⊙O的半徑為r,則AO=6-r,∵OM∥BC,∴△AOM∽△ABE,∴∴,∴,解得,∴的半徑為.【點(diǎn)睛】本題考查了切線的判定;等腰三角形的性質(zhì);相似三角形的判定與性質(zhì);解直角三角形等知識,綜合性較強(qiáng),正確添加輔助線,熟練運(yùn)用相關(guān)知識是解題的關(guān)鍵.20、(1)方案1;B(5,0);;(2)3.2m.【解析】試題分析:(1)根據(jù)拋物線在坐標(biāo)系的位置,可用待定系數(shù)法求拋物線的解析式.(2)把x=3代入拋物線的解析式,即可得到結(jié)論.試題解析:解:方案1:(1)點(diǎn)B的坐標(biāo)為(5,0),設(shè)拋物線的解析式為:.由題意可以得到拋物線的頂點(diǎn)為(0,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入,解得:=3.2,∴水面上漲的高度為3.2m.方案2:(1)點(diǎn)B的坐標(biāo)為(10,0).設(shè)拋物線的解析式為:.由題意可以得到拋物線的頂點(diǎn)為(5,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=3.2,∴水面上漲的高度為3.2m.方案3:(1)點(diǎn)B的坐標(biāo)為(5,),由題意可以得到拋物線的頂點(diǎn)為(0,0).設(shè)拋物線的解析式為:,把點(diǎn)B的坐標(biāo)(5,),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=,∴水面上漲的高度為3.2m.21、【解析】
過點(diǎn)P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形,先解Rt△PBD,得出BD=PD?tan26.6°;解Rt△CBD,得出CD=PD?tan37°;再根據(jù)CD﹣BD=BC,列出方程,求出PD=2,進(jìn)而求出PE=4,AE=5,然后在△APE中利用三角函數(shù)的定義即可求解.【詳解】解:如圖,過點(diǎn)P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD?tan∠BPD=PD?tan26.6°.在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,∴CD=PD?tan∠CPD=PD?tan37°.∵CD﹣BD=BC,∴PD?tan37°﹣PD?tan26.6°=1.∴0.75PD﹣0.50PD=1,解得PD=2.∴BD=PD?tan26.6°≈2×0.50=3.∵OB=220,∴PE=OD=OB﹣BD=4.∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.∴.22、(1)A(4,3);(2)28.【解析】
(1)點(diǎn)A是正比例函數(shù)與一次函數(shù)圖像的交點(diǎn)坐標(biāo),把與聯(lián)立組成方程組,方程組的解就是點(diǎn)A的橫縱坐標(biāo);(2)過點(diǎn)A作x軸的垂線,在Rt△OAD中,由勾股定理求得OA的長,再由BC=OA求得OB的長,用點(diǎn)P的橫坐標(biāo)a表示出點(diǎn)B、C的坐標(biāo),利用BC的長求得a值,根據(jù)即可求得△OBC的面積.【詳解】解:(1)由題意得:,解得,∴點(diǎn)A的坐標(biāo)為(4,3).(2)過點(diǎn)A作x軸的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高端光學(xué)鏡頭行業(yè)市場前景供需分析實(shí)施計劃調(diào)查投資評估規(guī)劃發(fā)展研究中心報告
- 體育交流協(xié)議書
- 馬達(dá)加斯加香料種植行業(yè)市場供需情況及品牌價值提升規(guī)劃分析研究報告
- 火炬花園施工方案(3篇)
- 眾籌集資協(xié)議書
- 餐飲連鎖行業(yè)市場集中度品牌競爭力發(fā)展策略評估規(guī)劃研究報告
- 餐飲行業(yè)商業(yè)模式創(chuàng)新及消費(fèi)趨勢規(guī)劃研究報告
- 抽獎會議活動策劃方案(3篇)
- 預(yù)制菜產(chǎn)業(yè)供應(yīng)鏈管理行業(yè)應(yīng)用現(xiàn)狀調(diào)研規(guī)劃評估趨勢分析報告
- 臨沂煎餅營銷方案(3篇)
- 新生兒皮膚管理指南解讀
- 產(chǎn)品統(tǒng)計管理制度
- 《社交媒體與移動社交媒體》課件
- 快遞合資合同協(xié)議書
- 化工巡檢培訓(xùn)課件
- 校園水果店經(jīng)營投標(biāo)方案(技術(shù)方案)
- 輸血反應(yīng)分類行業(yè)標(biāo)準(zhǔn)解讀
- 浙江嘉民塑料科技有限公司年產(chǎn)3萬噸酚醛模塑料項目環(huán)評報告
- B乘務(wù)員控制面板一前艙乘務(wù)員控制面板課件
- 2024鄂爾多斯市東勝國有資產(chǎn)投資控股集團(tuán)有限公司招聘26人筆試參考題庫附帶答案詳解
- 《工業(yè)戰(zhàn)略性新興產(chǎn)業(yè)分類目錄(2023)》
評論
0/150
提交評論