2025屆江蘇省江都區(qū)國際學(xué)校九上數(shù)學(xué)期末調(diào)研模擬試題含解析_第1頁
2025屆江蘇省江都區(qū)國際學(xué)校九上數(shù)學(xué)期末調(diào)研模擬試題含解析_第2頁
2025屆江蘇省江都區(qū)國際學(xué)校九上數(shù)學(xué)期末調(diào)研模擬試題含解析_第3頁
2025屆江蘇省江都區(qū)國際學(xué)校九上數(shù)學(xué)期末調(diào)研模擬試題含解析_第4頁
2025屆江蘇省江都區(qū)國際學(xué)校九上數(shù)學(xué)期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.已知反比例函數(shù)y=(k>0)的圖象經(jīng)過點A(1,a)、B(3,b),則a與b的關(guān)系正確的是()A.a(chǎn)=b B.a(chǎn)=﹣b C.a(chǎn)<b D.a(chǎn)>b2.如圖,小李打網(wǎng)球時,球恰好打過網(wǎng),且落在離網(wǎng)4m的位置上,則球拍擊球的高度h為()A.1.6m B.1.5m C.2.4m D.1.2m3.如圖,中,,,,則的值是()A. B. C. D.4.如圖2,四邊形ABCD的對角線AC、BD互相垂直,則下列條件能判定四邊形ABCD為菱形的是()A.BA=BC B.AC、BD互相平分 C.AC=BD D.AB∥CD5.如圖,一個半徑為r(r<1)的圓形紙片在邊長為6的正六邊形內(nèi)任意運動,則在該六邊形內(nèi),這個圓形紙片不能接觸到的部分的面積是()A.πr2 B.C. D.6.如圖,將△ABC繞點C順時針方向旋轉(zhuǎn)40°得△A’CB’,若AC⊥A’B’,則∠BAC等于()A.50° B.60° C.70° D.80°7.使得關(guān)于的不等式組有解,且使分式方程有非負(fù)整數(shù)解的所有的整數(shù)的和是()A.-8 B.-10 C.-16 D.-188.二次函數(shù)的圖象的頂點坐標(biāo)是()A. B. C. D.9.畢業(yè)前期,某班的全體學(xué)生互贈賀卡,共贈賀卡1980張.設(shè)某班共有名學(xué)生,那么所列方程為()A. B.C. D.10.如圖,正方形中,點、分別在邊,上,與交于點.若,,則的長為()A. B. C. D.11.已知二次函數(shù)y=a(x+1)2+b(a≠0)有最大值1,則a、b的大小關(guān)系為()A.a(chǎn)>b B.a(chǎn)<b C.a(chǎn)=b D.不能確定12.某車間20名工人日加工零件數(shù)如表所示:日加工零件數(shù)45678人數(shù)26543這些工人日加工零件數(shù)的眾數(shù)、中位數(shù)、平均數(shù)分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6二、填空題(每題4分,共24分)13.拋物線y=4x2﹣3x與y軸的交點坐標(biāo)是_____.14.對于實數(shù)a,b,定義運算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,則x的值為_____.15.如圖,點在反比例函數(shù)的圖象上,過點作坐標(biāo)軸的垂線交坐標(biāo)軸于點、,則矩形的面積為_________.16.我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一個問題:“今有邑方不知大小,各開中門,出北門三十步有木,出西門七百五十步見木,問:邑方幾何?”.其大意是:如圖,一座正方形城池,A為北門中點,從點A往正北方向走30步到B處有一樹木,C為西門中點,從點C往正西方向走750步到D處正好看到B處的樹木,則正方形城池的邊長為_____步.17.動點A(m+2,3m+4)在直線l上,點B(b,0)在x軸上,如果以B為圓心,半徑為1的圓與直線l有交點,則b的取值范圍是_____.18.如圖,□中,,,的周長為25,則的周長為__________.三、解答題(共78分)19.(8分)如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經(jīng)過點A、D的⊙O分別交AB、AC于點E、F,(1)求證:BC是⊙O切線;(2)設(shè)AB=m,AF=n,試用含m、n的代數(shù)式表示線段AD的長.20.(8分)通過實驗研究,專家們發(fā)現(xiàn):初中學(xué)生聽課的注意力指標(biāo)數(shù)是隨著老師講課時間的變化而變化的.講課開始時,學(xué)生的興趣激增,中間有一段時間的興趣保持平穩(wěn)狀態(tài),隨后開始分散.學(xué)生注意力指標(biāo)數(shù)隨時間()變化的函數(shù)圖象如圖所示(越大表示注意力越集中).當(dāng)時,圖象是拋物線的一部分,當(dāng)和時,圖象是線段.(1)當(dāng)時,求注意力指標(biāo)數(shù)與時間的函數(shù)關(guān)系式.(2)一道數(shù)學(xué)綜合題,需要講解24,問老師能否安排,使學(xué)生聽這道題時,注意力的指標(biāo)數(shù)都不低于1.21.(8分)某無人機(jī)興趣小組在操場上開展活動(如圖),此時無人機(jī)在離地面30米的D處,無人機(jī)測得操控者A的俯角為37°,測得點C處的俯角為45°.又經(jīng)過人工測量操控者A和教學(xué)樓BC距離為57米,求教學(xué)樓BC的高度.(注:點A,B,C,D都在同一平面上.參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(10分)某校為了解全校學(xué)生主題閱讀的情況,隨機(jī)抽查了部分學(xué)生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計圖表.請根據(jù)統(tǒng)計圖表中的信息,解答下列問題:(1)求被抽查的學(xué)生人數(shù)和m的值;(2)求本次抽查的學(xué)生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);(3)若該校共有1200名學(xué)生,根據(jù)抽查結(jié)果,估計該校學(xué)生在這一周內(nèi)文章閱讀的篇數(shù)為4篇的人數(shù)。23.(10分)在平面直角坐標(biāo)系中,已知P(,),R(,)兩點,且,,若過點P作軸的平行線,過點R作軸的平行線,兩平行線交于一點S,連接PR,則稱△PRS為點P,R,S的“坐標(biāo)軸三角形”.若過點R作軸的平行線,過點P作軸的平行線,兩平行線交于一點,連接PR,則稱△RP為點R,P,的“坐標(biāo)軸三角形”.右圖為點P,R,S的“坐標(biāo)軸三角形”的示意圖.(1)已知點A(0,4),點B(3,0),若△ABC是點A,B,C的“坐標(biāo)軸三角形”,則點C的坐標(biāo)為;(2)已知點D(2,1),點E(e,4),若點D,E,F(xiàn)的“坐標(biāo)軸三角形”的面積為3,求e的值.(3)若的半徑為,點M(,4),若在上存在一點N,使得點N,M,G的“坐標(biāo)軸三角形”為等腰三角形,求的取值范圍.24.(10分)已知:如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點,且點B的坐標(biāo)為.(1)求反比例函數(shù)的表達(dá)式;(2)點在反比例函數(shù)的圖象上,求△AOC的面積;(3)在(2)的條件下,在坐標(biāo)軸上找出一點P,使△APC為等腰三角形,請直接寫出所有符合條件的點P的坐標(biāo).25.(12分)如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于、兩點.(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;(2)求的面積;26.每年十月的第二個周四是世界愛眼日,為預(yù)防近視,超市決定對某型號護(hù)眼臺燈進(jìn)行降價銷售.降價前,進(jìn)價為30元的護(hù)眼臺燈以80元售出,平均每月能售出200盞,調(diào)查表明:這種護(hù)眼臺燈每盞售價每降低1元,其月平均銷售量將增加10盞.(1)寫出月銷售利潤y(單位:元)與銷售價x(單位:元/盞)之間的函數(shù)表達(dá)式;(2)當(dāng)銷售價定為多少元時,所得月利潤最大?最大月利潤為多少元?

參考答案一、選擇題(每題4分,共48分)1、D【分析】對于反比例函數(shù)(k≠0)而言,當(dāng)k>0時,作為該函數(shù)圖象的雙曲線的兩支應(yīng)該在第一和第三象限內(nèi).由點A與點B的橫坐標(biāo)可知,點A與點B應(yīng)該在第一象限內(nèi),然后根據(jù)反比例函數(shù)增減性分析問題.【詳解】解:∵點A的坐標(biāo)為(1,a),點B的坐標(biāo)為(3,b),∴與點A對應(yīng)的自變量x值為1,與點B對應(yīng)的自變量x值為3,∵當(dāng)k>0時,在第一象限內(nèi)y隨x的增大而減小,又∵1<3,即點A對應(yīng)的x值小于點B對應(yīng)的x值,∴點A對應(yīng)的y值大于點B對應(yīng)的y值,即a>b故選D本題考查反比例函數(shù)的圖像性質(zhì),利用數(shù)形結(jié)合思想解題是關(guān)鍵.2、B【解析】分析:本題是利用三角形相似的判定和性質(zhì)來求數(shù)據(jù).解析:根據(jù)題意三角形相似,∴故選B.3、C【分析】根據(jù)勾股定理求出a,然后根據(jù)正弦的定義計算即可.【詳解】解:根據(jù)勾股定理可得a=∴故選C.此題考查的是勾股定理和求銳角三角函數(shù)值,掌握利用勾股定理解直角三角形和正弦的定義是解決此題的關(guān)鍵.4、B【詳解】解:對角線互相垂直平分的四邊形為菱形.已知對角線AC、BD互相垂直,則需添加條件:AC、BD互相平分故選:B5、C【分析】當(dāng)圓運動到正六邊形的角上時,圓與兩邊的切點分別為E,F,連接OE,OB,OF,根據(jù)六邊形的性質(zhì)得出,所以,再由銳角三角函數(shù)的定義求出BF的長,最后利用可得出答案.【詳解】如圖,當(dāng)圓運動到正六邊形的角上時,圓與兩邊的切點分別為E,F,連接OE,OB,OF,∵多邊形是正六邊形,∴,,∴圓形紙片不能接觸到的部分的面積是故選:C.本題主要考查正六邊形和圓,掌握正六邊形的性質(zhì)和特殊角的三角函數(shù)值是解題的關(guān)鍵.6、A【解析】考點:旋轉(zhuǎn)的性質(zhì).分析:已知旋轉(zhuǎn)角度,旋轉(zhuǎn)方向,可求∠A′CA,根據(jù)互余關(guān)系求∠A′,根據(jù)對應(yīng)角相等求∠BAC.解:依題意旋轉(zhuǎn)角∠A′CA=40°,由于AC⊥A′B′,由互余關(guān)系得∠A′=90°-40°=50°,由對應(yīng)角相等,得∠BAC=∠A′=50°.故選A.7、D【分析】根據(jù)不等式組的解集的情況,得出關(guān)于m的不等式,求得m的取值范圍,再解分式方程得出x,根據(jù)x是非負(fù)整數(shù),得出m所有值的和.【詳解】解:∵關(guān)于的不等式組有解,則,∴,又∵分式方程有非負(fù)整數(shù)解,∴為非負(fù)整數(shù),∵,∴-10,-6,-2由,故答案選D.本題考查含參數(shù)的不等式組及含參數(shù)的分式方程,能夠準(zhǔn)確解出不等式組及方程是解題的關(guān)鍵.8、B【分析】根據(jù)二次函數(shù)的性質(zhì),用配方法求出二次函數(shù)頂點式,再得出頂點坐標(biāo)即可.【詳解】解:∵拋物線

=(x+1)2+3

∴拋物線的頂點坐標(biāo)是:(?1,3).

故選B.此題主要考查了利用配方法求二次函數(shù)頂點式以及求頂點坐標(biāo),此題型是考查重點,應(yīng)熟練掌握.9、D【分析】根據(jù)題意得:每人要贈送(x-1)張賀卡,有x個人,然后根據(jù)題意可列出方程:(x-1)x=1.【詳解】解:根據(jù)題意得:每人要贈送(x-1)張賀卡,有x個人,

∴全班共送:(x-1)x=1,

故選:D.此題主要考查了由實際問題抽象出一元二次方程,本題要注意讀清題意,弄清楚每人要贈送(x-1)張賀卡,有x個人是解決問題的關(guān)鍵.10、A【分析】根據(jù)正方形的性質(zhì)以及勾股定理求得,證明,根據(jù)全等三角形的性質(zhì)可得,繼而根據(jù),可求得CG的長,進(jìn)而根據(jù)即可求得答案.【詳解】∵四邊形ABCD是正方形,,∴,,∵,∴,∴,在和中,,∴,∴,∵,,∴,,∴,故選A.本題考查了正方形的性質(zhì),勾股定理,全等三角形的判定與性質(zhì),三角函數(shù)等知識,綜合性較強(qiáng),熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.注意數(shù)形結(jié)合思想的運用.11、B【解析】根據(jù)二次函數(shù)的性質(zhì)得到a<0,b=1,然后對各選項進(jìn)行判斷.【詳解】∵二次函數(shù)y=a(x-1)2+b(a≠0)有最大值1,∴a<0,b=1.∴a<b,故選B.本題考查了二次函數(shù)的最值:確定一個二次函數(shù)的最值,首先看自變量的取值范圍,當(dāng)自變量取全體實數(shù)時,其最值為拋物線頂點坐標(biāo)的縱坐標(biāo);當(dāng)自變量取某個范圍時,要分別求出頂點和函數(shù)端點處的函數(shù)值,比較這些函數(shù)值,從而獲得最值12、D【詳解】5出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,則眾數(shù)是5;把這些數(shù)從小到大排列,中位數(shù)是第10,11個數(shù)的平均數(shù),則中位數(shù)是(6+6)÷2=6;平均數(shù)是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.二、填空題(每題4分,共24分)13、(0,0)【解析】根據(jù)y軸上的點的特點:橫坐標(biāo)為0.可代入求得y=0,因此可得拋物線y=4x2-3x與y軸的交點坐標(biāo)是(0,0).故答案為(0,0).14、2【分析】根據(jù)新定義運算對式子進(jìn)行變形得到關(guān)于x的方程,解方程即可得解.【詳解】由題意得,(x+2)2﹣(x+2)(x﹣2)=6,整理得,3x+3=6,解得,x=2,故答案為2.本題考查了解方程,涉及到完全平方公式、多項式乘法的運算等,根據(jù)題意正確得到方程是解題的關(guān)鍵.15、1【分析】因為過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積S是個定值,即S=|k|.【詳解】解:∵PA⊥x軸于點A,PB⊥y軸于B點,

∴矩形AOBP的面積=|1|=1.

故答案為:1.本題考查了反比例函數(shù)(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標(biāo)軸所圍成的矩形面積為|k|.16、1.【分析】設(shè)正方形城池的邊長為步,根據(jù)比例性質(zhì)求.【詳解】解:設(shè)正方形城池的邊長為步,即正方形城池的邊長為1步.故答案為1.本題考查了相似三角形的應(yīng)用:構(gòu)建三角形相似,利用相似比計算對應(yīng)的線段長.17、【分析】先利用點A求出直線l的解析式,然后求出以B為圓心,半徑為1的圓與直線l相切時點B的坐標(biāo),即b的值,從而確定以B為圓心,半徑為1的圓與直線l有交點時b的取值范圍.【詳解】設(shè)直線l的解析式為∵動點A(m+2,3m+4)在直線l上,將點A代入直線解析式中得解得∴直線l解析式為y=3x﹣2如圖,直線l與x軸交于點C(,0),交y軸于點A(0,﹣2)∴OA=2,OC=∴AC=若以B為圓心,半徑為1的圓與直線l相切于點D,連接BD∴BD⊥AC∴sin∠BCD=sin∠OCA=∴∴∴以B為圓心,半徑為1的圓與直線l相切時,B點坐標(biāo)為或∴以B為圓心,半徑為1的圓與直線l有交點,則b的取值范圍是故答案為本題主要考查直線與圓的位置關(guān)系,掌握銳角三角函數(shù)是解題的關(guān)鍵.18、2【分析】根據(jù)平行四邊形的性質(zhì)可得出△ABD≌CDB,求得△ABD的周長,利用三角形相似的性質(zhì)即可求得△DEF的周長.【詳解】解:∵EF∥AB,DE:AE=2:3,

∴△DEF∽△DAB,,∴△DEF與△ABD的周長之比為2:1.

又∵四邊形ABCD是平行四邊形,

∴AB=CD,AD=BC,BD=DB,

∴△ABD≌△CDB(SSS),又△BDC的周長為21,∴△ABD的周長為21,

∴△DEF的周長為2,

故答案為:2.本題考查了相似三角形的判定與性質(zhì),理解相似三角形的周長比與相似比的關(guān)系是解題的關(guān)鍵.三、解答題(共78分)19、(1)見解析;(2)【分析】(1)連接OD,由AD為角平分線得到∠BAD=∠CAD,再由等邊對等角得到∠OAD=∠ODA,等量代換得到∠ODA=∠CAD,進(jìn)而得到OD∥AC,得到OD與BC垂直,即可得證;

(2)連接DF,由(1)得到BC為圓O的切線,結(jié)合角度的運算得出∠CDF=∠DAF,進(jìn)而得到∠AFD=∠ADB,結(jié)合∠BAD=∠DAF得到△ABD∽△ADF,由相似得比例,即可表示出AD;【詳解】(1)證明:如圖,連接OD,則OD為圓O的半徑,∵AD平分∠BAC,∴∠BAD=∠CAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∴∠ODC=∠C=90°即OD⊥BC,∴BC是⊙O切線.(2)連接DF,OF,由(1)知BC為圓O的切線,∴∠ODC=90°,∴∠ODF+∠CDF=90°,∴∠ODF=90°-∠CDF,∵OD=OF,∴∠ODF=∠OFD=,又∵∠DAF=,∴∠ODF=∴∠CDF=∠DAF又∵∠CDF+∠CFD=90°,∠DAF+∠CDA=90°,∴∠CDA=∠CFD,

∴∠AFD=∠ADB,

∵∠BAD=∠DAF,

∴△ABD∽△ADF,∴,則∵AB=m,AF=n,∴∴此題屬于圓的綜合題,涉及的知識有:切線的判定與性質(zhì),相似三角形的判定與性質(zhì),以及平行線的判定與性質(zhì),熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.20、(1)y=+20(0≤x≤10);(2)能,理由見解析.【分析】(1)利用待定系數(shù)法假設(shè)函數(shù)的解析式,代入方程的點分別求出、、的值,即可求出當(dāng)時,注意力指標(biāo)數(shù)與時間的函數(shù)關(guān)系式.(2)根據(jù)函數(shù)解析式,我們可以求出學(xué)生在這這道題時,注意力的指標(biāo)數(shù)都不低于1時x的值,然后和24進(jìn)行比較,即可得到結(jié)論.【詳解】(1)設(shè)時的拋物線為.由圖象知拋物線過(0,20),(5,39),(10,48)三點,所以.解得所以(2)由圖象知,當(dāng)時,.當(dāng)時,令,.解得:(舍去).當(dāng)時,令,得,解得:因為,所以老師可以通過適當(dāng)?shù)陌才?,在學(xué)生的注意力指標(biāo)數(shù)不低于1時,講授完這道數(shù)學(xué)綜合題.本題考查了二次函數(shù)的應(yīng)用,掌握待定系數(shù)法求解函數(shù)解析式是解題的關(guān)鍵.21、4米【分析】由題意過點D作DE⊥AB于點E,過點C作CF⊥DE于點F,并利用解直角三角形進(jìn)行分析求解即可.【詳解】解:過點D作DE⊥AB于點E,過點C作CF⊥DE于點F.由題意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.1.∴AE=2.∵AB=57,∴BE=3.∵四邊形BCFE是矩形,∴CF=BE=3.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=3.∴BC=EF=30-3=4.答:教學(xué)樓BC高約4米.本題考查解直角三角形得的實際應(yīng)用,利用解直角三角形相關(guān)結(jié)合銳角三角函數(shù)進(jìn)行分析.22、(1)50,12;(2)5,4;(3)336.【分析】(1)先由6篇的人數(shù)及其所占百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他篇數(shù)的人數(shù)求得m的值;(2)根據(jù)中位數(shù)和眾數(shù)的定義求解;(3)用總?cè)藬?shù)乘以樣本中4篇的人數(shù)所占比例即可得.【詳解】解:(1)被調(diào)查的總?cè)藬?shù)為8÷16%=50人,m=50-(10+14+8+6)=12;(2)由于共有50個數(shù)據(jù),其中位數(shù)為第25、26個數(shù)據(jù)的平均數(shù),而第25、26個數(shù)據(jù)均為5篇,所以中位數(shù)為5篇,出現(xiàn)次數(shù)最多的是4篇,所以眾數(shù)為4篇;(3)估計該校學(xué)生在這一周內(nèi)文章閱讀的篇數(shù)為4篇的人數(shù)為人.本題考查的是扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?3、(1)(3,4);(2)或;(3)m的取值范圍是或.【分析】(1)根據(jù)點C到x軸、y軸的距離解答即可;(2)根據(jù)“坐標(biāo)軸三角形”的定義求出線段DF和EF,然后根據(jù)三角形的面積公式求解即可;(3)根據(jù)題意可得:符合題意的直線MN應(yīng)為y=x+b或y=-x+b.①當(dāng)直線MN為y=x+b時,結(jié)合圖形可得直線MN平移至與⊙O相切,且切點在第四象限時,b取得最小值,根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求得b的最小值,進(jìn)而可得m的最大值;當(dāng)直線MN平移至與⊙O相切,且切點在第二象限時,b取得最大值,根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求得b的最大值,進(jìn)而可得m的最小值,可得m的取值范圍;②當(dāng)直線MN為y=-x+b時,同①的方法可得m的另一個取值范圍,問題即得解決.【詳解】解:(1)根據(jù)題意作圖如下:由圖可知:點C到x軸距離為4,到y(tǒng)軸距離為3,∴C(3,4);故答案為:(3,4);(2)∵點D(2,1),點E(e,4),點D,E,F(xiàn)的“坐標(biāo)軸三角形”的面積為3,∴,,∴,即=2,解得:e=4或e=0;(3)由點N,M,G的“坐標(biāo)軸三角形”為等腰三角形可得:直線MN為y=x+b或y=-x+b.①當(dāng)直線MN為y=x+b時,由于點M的坐標(biāo)為(m,4),可得m=4-b,由圖可知:當(dāng)直線MN平移至與⊙O相切,且切點在第四象限時,b取得最小值.此時直線MN記為M1N1,其中N1為切點,T1為直線M1N1與y軸的交點.∵△ON1T1為等腰直角三角形,ON=,∴,∴b的最小值為-3,∴m的最大值為m=4-b=7;當(dāng)直線MN平移至與⊙O相切,且切點在第二象限時,b取得最大值.此時直線MN記為M2N2,其中N2為切點,T2為直線M2N2與y軸的交點.∵△ON2T為等腰直角三角形,ON2=,∴,∴b的最大值為3,∴m的最小值為m=4-b=1,∴m的取值范圍是;②當(dāng)直線MN為y=-x+b時,同理可得,m=b-4,當(dāng)b=3時,m=-1;當(dāng)b=-3時,m=-7;∴m的取值范圍是.綜上所述,m的取值范圍是或.本題是新定義概念題,主要考查了三角形的面積、直線與圓相切的性質(zhì)、等腰三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論