2025屆普洱市重點中學九年級數(shù)學第一學期期末監(jiān)測模擬試題含解析_第1頁
2025屆普洱市重點中學九年級數(shù)學第一學期期末監(jiān)測模擬試題含解析_第2頁
2025屆普洱市重點中學九年級數(shù)學第一學期期末監(jiān)測模擬試題含解析_第3頁
2025屆普洱市重點中學九年級數(shù)學第一學期期末監(jiān)測模擬試題含解析_第4頁
2025屆普洱市重點中學九年級數(shù)學第一學期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,在矩形ABCD中,對角線AC,BD交與點O.已知∠AOB=60°,AC=16,則圖中長度為8的線段有()A.2條 B.4條C.5條 D.6條2.已知∠A是銳角,,那么∠A的度數(shù)是()A.15° B.30° C.45° D.60°3.把拋物線向右平移l個單位,然后向下平移3個單位,則平移后拋物線的解析式為()A. B.C. D.4.用配方法解方程時,應將其變形為()A. B. C. D.5.如圖所示幾何體的左視圖正確的是()A. B. C. D.6.如圖,一條公路環(huán)繞山腳的部分是一段圓弧形狀(O為圓心),過A,B兩點的切線交于點C,測得∠C=120°,A,B兩點之間的距離為60m,則這段公路AB的長度是()A.10πm B.20πm C.10πm D.60m7.有一人患了流感,經過兩輪傳染后共有121人患了流感,每輪傳染中平均一個人傳染了幾個人?若設每輪傳染中平均一個人傳染了x個人,那么x滿足的方程是()A. B. C. D.8.下列圖形:①國旗上的五角星,②有一個角為60°的等腰三角形,③一個半徑為π的圓,④兩條對角線互相垂直平分的四邊形,⑤函數(shù)y=的圖象,其中既是軸對稱又是中心對稱的圖形有()A.有1個 B.有2個 C.有3個 D.有4個9.在相同的時刻,太陽光下物高與影長成正比.如果高為1.5米的人的影長為2.5米,那么影長為30米的旗桿的高是().A.18米

B.16米

C.20米

D.15米10.如圖,矩形中,,交于點,,分別為,的中點.若,,則的度數(shù)為()A. B. C. D.二、填空題(每小題3分,共24分)11.在Rt△ABC中,∠C=90°,如果AB=6,,那么AC=_____.12.如圖,將Rt△ABC繞直角頂點A順時針旋轉90°得到△AB′C′,連結BB′,若∠1=25°,則∠C的度數(shù)是___________.13.若二次函數(shù)(為常數(shù))的最大值為3,則的值為________.14.若m是方程2x2﹣3x=1的一個根,則6m2﹣9m的值為_____.15.已知:,且y≠4,那么=______.16.在四邊形ABCD中,AD=BC,AD∥BC.請你再添加一個條件,使四邊形ABCD是菱形.你添加的條件是_________.(寫出一種即可)17.二次函數(shù)y=﹣x2+bx+c的部分圖象如圖所示,對稱軸是直線x=﹣1,則關于x的一元二次方程﹣x2+bx+c=0的根為_____.18.如圖,已知正方形ABCD的邊長是4,點E是AB邊上一動點,連接CE,過點B作BG⊥CE于點G,點P是AB邊上另一動點,則PD+PG的最小值為_____.三、解答題(共66分)19.(10分)(1)解方程:(2)如圖,是等腰直角三角形,是斜邊,將繞點逆時針旋轉后,能與重合,如果,那么的長等于多少?20.(6分)如圖,⊙O的直徑AB為10cm,弦BC=8cm,∠ACB的平分線交⊙O于點D.連接AD,BD.求四邊形ABCD的面積.21.(6分)如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C(1)求此反比例函數(shù)的表達式;(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.22.(8分)(1)計算:2sin30°+cos30°?tan60°.(2)已知,且a+b=20,求a,b的值.23.(8分)如圖,在直角三角形ABC中,∠C=90°,點D是AC邊上一點,過點D作DE⊥BD,交AB于點E,若BD=10,tan∠ABD=,cos∠DBC=,求DC和AB的長.24.(8分)如圖,正方形網格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系中,△OAB的三個頂點O(0,0)、A(4,1)、B(4,4)均在格點上.(1)畫出△OAB繞原點順時針旋轉后得到的△,并寫出點的坐標;(2)在(1)的條件下,求線段在旋轉過程中掃過的扇形的面積.25.(10分)如圖,△OAB中,OA=OB=10cm,∠AOB=80°,以點O為圓心,半徑為6cm的優(yōu)弧分別交OA、OB于點M、N.(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉80°得OP′.求證:AP=BP′;(2)點T在左半弧上,若AT與圓弧相切,求AT的長.(3)Q為優(yōu)弧上一點,當△AOQ面積最大時,請直接寫出∠BOQ的度數(shù)為.26.(10分)在如圖所示的網格圖中,已知和點(1)在網格圖中點M為位似中心,畫出,使其與的位似比為1:1.(1)寫出的各頂點的坐標.

參考答案一、選擇題(每小題3分,共30分)1、D【詳解】解:∵在矩形ABCD中,AC=16,∴AO=BO=CO=DO=×16=1.∵AO=BO,∠AOB=60°,∴AB=AO=1,∴CD=AB=1,∴共有6條線段為1.故選D.2、C【分析】根據(jù)特殊角的三角函數(shù)值求解即可.【詳解】∵,且∠A是銳角,∴∠A=45°.故選:C.本題主要考查了特殊角的三角函數(shù)值,熟練掌握相關數(shù)值是解題關鍵.3、D【分析】根據(jù)題意原拋物線的頂點坐標為(0,0),根據(jù)平移規(guī)律得平移后拋物線頂點坐標為(1,-3),根據(jù)拋物線的頂點式求解析式.【詳解】解:拋物線形平移不改變解析式的二次項系數(shù),平移后頂點坐標為(1,-3),∴平移后拋物線解析式為.故選:D.本題考查拋物線的平移與拋物線解析式的聯(lián)系,關鍵是把拋物線的平移轉化為頂點的平移,利用頂點式求解析式.4、D【分析】二次項系數(shù)為1時,配一次項系數(shù)一半的平方即可.【詳解】故選:D本題考查的是解一元二次方程的配方法,配方法要先把二次項系數(shù)化為1,再配一次項系數(shù)一半的平方是關鍵.5、A【分析】左視圖是從物體的左面看得到的視圖,找到從左面看所得到的圖形即可.【詳解】該幾何體的左視圖為:是一個矩形,且矩形中有兩條橫向的虛線.故選A.本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖6、B【分析】連接OA,OB,OC,根據(jù)切線的性質得到∠OAC=∠OBC=90°,AC=BC,推出△AOB是等邊三角形,得到OA=AB=60,根據(jù)弧長的計算公式即可得到結論.【詳解】解:連接OA,OB,OC,∵AC與BC是⊙O的切線,∠C=120°,∴∠OAC=∠OBC=90°,AC=BC,∴∠AOB=60°,∵OA=OB,∴△AOB是等邊三角形,∴OA=AB=60,∴公路AB的長度==20πm,故選:B.本題主要考察切線的性質及弧長,解題關鍵是連接OA,OB,OC推出△AOB是等邊三角形.7、D【分析】先由題意列出第一輪傳染后患流感的人數(shù),再列出第二輪傳染后患流感的人數(shù),即可列出方程.【詳解】解:設每輪傳染中平均一個人傳染了x個人,

則第一輪傳染后患流感的人數(shù)是:1+x,

第二輪傳染后患流感的人數(shù)是:1+x+x(1+x),

因此可列方程,1+x+x(1+x)=1.

故選:D.本題主要考查一元二次方程的應用,找到等量關系是解題的關鍵.8、C【分析】根據(jù)中心對稱圖形和軸對稱圖形的定義可得答案.【詳解】解:①國旗上的五角星,是軸對稱圖形,不是中心對稱圖形;②有一個角為60°的等腰三角形,是軸對稱圖形,是中心對稱圖形;③一個半徑為π的圓,是軸對稱圖形,是中心對稱圖形;④兩條對角線互相垂直平分的四邊形,是軸對稱圖形,是中心對稱圖形;⑤函數(shù)y=的圖象,不是軸對稱圖形,是中心對稱圖形;既是軸對稱又是中心對稱的圖形有3個,故選:C.此題主要考查了軸對稱圖形和中心對稱圖形,以及反比例函數(shù)圖象和線段垂直平分線,關鍵是掌握軸對稱圖形和中心對稱圖形定義.9、A【解析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經過物體頂部的太陽光線三者構成的兩個直角三角形相似.【詳解】根據(jù)題意解:標桿的高:標桿的影長=旗桿的高:旗桿的影長,即1.5:2.5=旗桿的高:30,∴旗桿的高==18米.故選:A.考查了相似三角形的應用,本題只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,求解即可得出旗桿的高.10、A【分析】根據(jù)矩形的性質和直角三角形的性質以及中位線的性質,即可得到答案.【詳解】∵,分別為,的中點,∴MN是?OBC的中位線,∴OB=2MN=2×3=6,∵四邊形是矩形,∴OB=OD=OA=OC=6,即:AC=12,∵AB=6,∴AC=2AB,∵∠ABC=90°,∴=30°.故選A.本題主要考查矩形的性質和直角三角形的性質以及中位線的性質,掌握矩形的對角線互相平分且相等,是解題的關鍵.二、填空題(每小題3分,共24分)11、2【解析】如圖所示,在Rt△ABC中,∠C=90°,AB=6,cosA=,∴cosA=,則AC=AB=×6=2,故答案為2.12、70°【詳解】解:∵Rt△ABC繞直角頂點A順時針旋轉90°得到△AB′C′,∴AB=AB′,∴△ABB′是等腰直角三角形,∴∠ABB′=45°,∴∠AC′B′=∠1+∠ABB′=25°+45°=70°,由旋轉的性質得∠C=∠AC′B′=70°.故答案為70°.本題考查旋轉的性質,掌握旋轉圖像對應邊相等,對應角相等是本題的解題關鍵.13、-1【分析】根據(jù)二次函數(shù)的最大值公式列出方程計算即可得解.【詳解】由題意得,,

整理得,,

解得:,

∵二次函數(shù)有最大值,

∴,

∴.

故答案為:.本題考查了二次函數(shù)的最值,易錯點在于要考慮a的正負情況.14、1【分析】把m代入方程2x2﹣1x=1,得到2m2-1m=1,再把6m2-9m變形為1(2m2-1m),然后利用整體代入的方法計算.【詳解】解:∵m是方程2x2﹣1x=1的一個根,∴2m2﹣1m=1,∴6m2﹣9m=1(2m2﹣1m)=1×1=1.故答案為1.本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.15、【分析】由分式的性質和等比性質,即可得到答案.【詳解】解:∵,∴,由等比性質,得:;故答案為:.本題考查了比例的性質,以及分式的性質,解題的關鍵是熟練掌握等比性質.16、此題答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【分析】由在四邊形ABCD中,AD=BC,AD∥BC,可判定四邊形ABCD是平行四邊形,然后根據(jù)一組鄰邊相等的平行四邊形是菱形與對角線互相垂直的平行四邊形是菱形,即可判定四邊形ABCD是菱形,則可求得答案.【詳解】解:如圖,∵在四邊形ABCD中,AD=BC,AD∥BC,

∴四邊形ABCD是平行四邊形,

∴當AB=BC或BC=CD或CD=AD或AB=AD時,四邊形ABCD是菱形;

當AC⊥BD時,四邊形ABCD是菱形.

故答案為:此題答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.此題考查了菱形的判定定理.此題屬于開放題,難度不大,注意掌握一組鄰邊相等的平行四邊形是菱形與對角線互相垂直的平行四邊形是菱形是解此題的關鍵.17、x1=1,x2=﹣1.【分析】根據(jù)二次函數(shù)的性質和函數(shù)的圖象,可以得到該函數(shù)圖象與x軸的另一個交點,從而可以得到一元二次方程-x2+bx+c=0的解,本題得以解決.【詳解】由圖象可得,拋物線y=﹣x2+bx+c與x軸的一個交點為(﹣1,0),對稱軸是直線x=﹣1,則拋物線與x軸的另一個交點為(1,0),即當y=0時,0=﹣x2+bx+c,此時方程的解是x1=1,x2=﹣1,故答案為:x1=1,x2=﹣1.本題考查拋物線與x軸的交點、二次函數(shù)的性質,解答本題的關鍵是明確題意,利用二次函數(shù)的性質解答.18、2-2【解析】作DC關于AB的對稱點D′C′,以BC中的O為圓心作半圓O,連D′O分別交AB及半圓O于P、G.將PD+PG轉化為D′G找到最小值.【詳解】如圖:取點D關于直線AB的對稱點D′,以BC中點O為圓心,OB為半徑畫半圓,連接OD′交AB于點P,交半圓O于點G,連BG,連CG并延長交AB于點E,由以上作圖可知,BG⊥EC于G,PD+PG=PD′+PG=D′G,由兩點之間線段最短可知,此時PD+PG最小,∵D′C’=4,OC′=6,∴D′O=,∴D′G=-2,∴PD+PG的最小值為-2,故答案為-2.本題考查了軸對稱的性質、直徑所對的圓周角是直角、線段和的最小值問題等,綜合性較強,能靈活利用相關知識正確添加輔助線是解題的關鍵.通常解此類問題都是將線段之和轉化為固定兩點之間的線段和最短.三、解答題(共66分)19、(1)=1,=5;(2)2【詳解】(1)解:(x﹣1)(x﹣5)=0x﹣1=0或x﹣5=0∴,,(2)解:∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,∵△ABP繞點A逆時針旋轉后,能與△ACP′重合,∴AP=AP′,∠PAP′=∠BAC=90°,∴△APP′為等腰直角三角形,∴PP′=AP=2.本題考查了解一元二次方程,等腰直角三角形,旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了等腰直角三角形的性質.20、S四邊形ADBC=49(cm2).【分析】根據(jù)直徑所對的角是90°,判斷出△ABC和△ABD是直角三角形,根據(jù)圓周角∠ACB的平分線交⊙O于D,判斷出△ADB為等腰直角三角形,根據(jù)勾股定理求出AD、BD、AC的值,再根據(jù)S四邊形ADBC=S△ABD+S△ABC進行計算即可.【詳解】∵AB為直徑,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴,∴AD=BD,∵直角△ABD中,AD=BD,AD2+BD2=AB2=102,則AD=BD=5,則S△ABD=AD?BD=×5×5=25(cm2),在直角△ABC中,AC==6(cm),則S△ABC=AC?BC=×6×8=24(cm2),則S四邊形ADBC=S△ABD+S△ABC=25+24=49(cm2).本題考查了圓周角定理、三角形的面積等,正確求出相關的數(shù)值是解題的關鍵.21、(1)y=-(2)點P(﹣6,0)或(﹣2,0)【分析】(1)利用點A在y=﹣x+4上求a,進而代入反比例函數(shù)求k.(2)聯(lián)立方程求出交點,設出點P坐標表示三角形面積,求出P點坐標.【詳解】(1)把點A(﹣1,a)代入y=x+4,得a=3,∴A(﹣1,3)把A(﹣1,3)代入反比例函數(shù)∴k=﹣3,∴反比例函數(shù)的表達式為(2)聯(lián)立兩個函數(shù)的表達式得解得或∴點B的坐標為B(﹣3,1)當y=x+4=0時,得x=﹣4∴點C(﹣4,0)設點P的坐標為(x,0)∵,∴解得x1=﹣6,x2=﹣2∴點P(﹣6,0)或(﹣2,0)本題是一次函數(shù)和反比例函數(shù)綜合題,考查利用方程思想求函數(shù)解析式,通過聯(lián)立方程求交點坐標以及在數(shù)形結合基礎上的面積表達.22、(1);(2)a=8,b=12【分析】(1)代入特殊角的三角函數(shù)值,根據(jù)二次根式的運算法則計算即可;(2)設=k,即a=2k,b=3k,代入a+b=20,求出k的值,即可求出a,b的值.【詳解】(1)原式==1+=;(2)設=k,即a=2k,b=3k,代入a+b=20,得2k+3k=20,∴k=4,∴a=8,b=12.本題考查了特殊角的三角函數(shù)值,實數(shù)的混合運算,比例的性質,熟練掌握各知識點是解答本題的關鍵.23、DC=6;AB=,【分析】如圖,作EH⊥AC于H.解直角三角形分別求出DE,EB,BC,CD,再利用相似三角形的性質求出AE即可解決問題.【詳解】如圖,作EH⊥AC于H.∵DE⊥BD,∴∠BDE=90°,∵tan∠ABD==,BD=10,∴DE=5,BE===5,∵∠C=90°,cos∠DBC==,∴BC=8,CD===6,∵EH∥BC,∴△AEH∽△ABC,∴=,∴=,∴AE=,∴AB=AE+BE=+5=.本題考查解直角三角形的應用,相似三角形的判定和性質等知識,解題的關鍵是熟練掌握基本知識24、(1)圖見解析,點A1坐標是(1,-4);(2)【分析】(1)據(jù)網格結構找出點A、B繞點O按照順時針旋轉90°后的對應點A1、B1的位置,然后順次O、A1、B1連接即可,再根據(jù)平面直角坐標系寫出A1點的坐標;(2)利用扇形的面積公式求解即可,利用網格結構可得出.【詳解】(1)點A1坐標是(1,-4)(2)根據(jù)題意可得出:∴線段在旋轉過程中掃過的扇形的面積為:.本題考查的知識點是旋轉變換以及扇形的面積公式,熟練

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論