版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
FinanceandEconomicsDiscussionSeries
FederalReserveBoard,Washington,D.C.
ISSN1936-2854(Print)ISSN2767-3898(Online)
LostinAggregation:GeographicMismeasurementofIncomeand
Spending
SinemHacioglu-Hoke,LeoFeler,JackChylak
2025-050
Pleasecitethispaperas:
Hac?o?gluHoke,Sinem,LeoFeler,andJackChylak(2025).“LostinAggregation:Ge-ographicMismeasurementofIncomeandSpending,”FinanceandEconomicsDiscus-sionSeries2025-050.Washington:BoardofGovernorsoftheFederalReserveSystem,
/10.17016/FEDS.2025.050
.
NOTE:Sta?workingpapersintheFinanceandEconomicsDiscussionSeries(FEDS)arepreliminarymaterialscirculatedtostimulatediscussionandcriticalcomment.Theanalysisandconclusionssetfortharethoseoftheauthorsanddonotindicateconcurrencebyothermembersoftheresearchsta?ortheBoardofGovernors.ReferencesinpublicationstotheFinanceandEconomicsDiscussionSeries(otherthanacknowledgement)shouldbeclearedwiththeauthor(s)toprotectthetentativecharacterofthesepapers.
LostinAggregation:GeographicMismeasurement
ofIncomeandSpending☆
SinemHac?o?glu-Hoke*
FederalReserveBoard
CEPR
LeoFelert
Numerator
JackChylak?Numerator
July3,2025
Abstract
Usingzip-codemedianincomeasaproxyforhouseholdincomeiscommonineconomicsbutcanmaskheterogeneityandyieldmisleadingconclusions.Usingzip-codemedianincomeandself-reportedhouseholdincomesfromarepresenta-tivepanelof150,000U.S.households,wedecomposeaverageretailspendingfor2018-2024.Whenusingself-reportedincomes,weobservesubstantialdivergenceinspendingbetweenlow-andhigh-incomehouseholdsstartinginmid-2021.Whenusingzip-codeaggregatesasaproxy,thisdivergencedisappears.Ourfindingsindi-catea35to75percentdiscrepancybetweenzip-codeaggregatesandself-reportedincomes,highlightingthelimitationofzip-codeaggregatesasaproxyforhouseholdincomes.
Keywords:Spending,Income,Heterogeneity,Zip-codeAverageIncome
JELClassification:E01,E2,E32
*
sinem.haciogluhoke@
Web:
t
leo.feler@
Web:
?
jack.chylak@
☆TheauthorswouldliketothankTomazCajner,RyanDecker,AaronFlaaen,ChrisKurzandMichaelPalumbo.TheanalysisandconclusionssetforthhereinarethoseoftheauthorsanddonotindicateconcurrencebyothermembersoftheresearchstaffortheBoardofGovernorsoftheFederalReserveSystem.Theuseofcommerciallyprovideddataisforresearchpurposesonlyanddoesnotimplyendorsement,recommendation,orfavoringofanybrand,product,service,orcompanybytheBoardofGovernorsortheFederalReserveSystem.TheviewsexpressedinthispaperaretheresponsibilityoftheauthorsandshouldnotbeinterpretedasreflectingtheviewsofNumerator.Allerrorsremainourown.
2
1Introduction
Itiscommoninsocialsciencestocategorizehouseholdsaslow-,middle-orhigh-incometoassesstheheterogeneityin,forexample,consumers’spendingbehavior.Whenhouseholdincomesarenotobserved,acommonpracticeistouseasaproxytheaverageormedianincomeinzipcodeswherehouseholdslive,generallyobtainedfrompopulationsurveys.Thereasonsforsuchanapproximationofhouseholdincomesusingzip-codeaggregatesarebecause,first,wherehouseholdsliveiscorrelatedwiththeirincomes,andsecond,itisraretohaveaccesstodatasetsthatprovideinformationondisaggregatedhouseholdincomes.Inthispaper,weassesswhetherzip-codeaggregatesareavalidproxyfordisaggregatedhouseholdincomesthataccuratelyreflectsheterogeneityinconsumerbehavior,usingarepresentativepanelofU.S.householdswithdisaggregatedinformationonhouseholdincomes.
Thispaperhastwoobjectivesthatleadtonovelcontributionstoexistingstudiesthatdocumentheterogeneityinspendingpatterns.First,usingadetailedmicrodataset,weconstructameasureofrealaverageretailspendingforlow-,middle-andhigh-incomehouseholdsusinghouseholds’self-reportedincomestoconstructincomegroups.Second,weuseourmicro-datatotesttheimplicationsofusingzip-codeaggregates.Ourre-sultsindicatethatusingzip-codeaggregatesasaproxyforhouseholdincomesmasksheterogeneityinconsumerbehaviorandleadstomisleadingconclusionsaboutchangesinconsumerbehaviorduringthepost-pandemicperiod.
Weuseapaneldatasetof150,000representativeU.S.householdsfromNumerator,aconsumerdataandsurveycompany.NumeratorobtainsphysicalandonlinereceiptsfromthisrollingstaticpanelofU.S.householdsforwhomwehavedetailedinformationonhouseholdattributes.Wefirstcompareouroverallmeasureofmonthlyaverageretailspendingbetween2018and2024againsttheCensusBureau’sAdvanceMonthlySalesforRetailandFoodServicesreport(MARTS)toestablishourmeasure’sreliability.
HavingestablishedthattheaggregatedNumeratorretailspendingseriescloselymatchestheCensusBureau’sretailsalesseries,weexaminespendingpatternsbasedonhouse-holdincome.Weanalyzetheaveragemonthlyhouseholdretailspendingforlow-incomehouseholds(§0-§60Kinannualhouseholdincome),formiddle-incomehouseholds(§60K-
3
§100K),andforhigh-incomehouseholds(§100K+)from2018to2024.Publishedmea-suresdonotprovidedetailsonwhichconsumers’spendinghasremainedresilientinthepost-pandemicperiod,andhencefallshortofidentifyingvulnerabilitiesintheeconomyoriginatingfromspecificgroups,soouranalysisfillsthisgap.Ourresultssuggestthatretailspendinggrowthevolvessimilarlyforallhouseholdsbeforethepandemic.However,startinginmid-2021,thespendingofhigh-incomehouseholdsdivergesfromthespend-ingoflow-andmiddle-incomehouseholds.High-incomehouseholdscontinuetospendstronglywhilelow-andmiddle-incomehouseholds’spendinglagsbehind.Thisfindingissupportedbymanyanalysesandcanberationalizedbylow-incomehouseholdsdepletingtheirpandemic-erasavings(
Abdelrahmanetal.
,
2024
)andbytheexpirationofgov-ernmentsupportprogramsthathelpedlow-andmiddle-incomehouseholdsduringandfollowingthepandemic.
1
Moreover,weshowthatthisdivergenceisarobustfindingwhenwedecomposespendingbyeducationandsimulatescenarios,usingahouseholdsurvey,wherewecontrolforthehighermobilitybetweenincomegroupsin2022and2023.
Insteadofusinghouseholds’self-reportedincomestoconstructincomegroups,wenextusemedianzip-codeincomesreportedintheAmericanCommunitySurvey(ACS),following
Chettyetal.
(
2023
),toclassifyhouseholdsaslow-,middle-andhigh-income.OuranalysisusingNumeratorself-reportedincomedataandreplicatingzip-codemedianincomeaggregationisuniqueinallowingadirectcomparisonofspendingmeasuresbasedondisaggregatedself-reportedincomeversusaggregatedproxiedincome.Usingeithermethod,wedocumentsimilarpre-pandemicspendingdynamics.However,thediver-genceweobserveinthepost-2021spendingdisappearswhenweuseaggregatedzip-codemedianincomeasaproxy.Usingaggregatedzip-codemedianincome,itappearsthatspendingevolvedsimilarlyforallhouseholdincomegroupsduringthepost-pandemic
1Suchanalysisofdocumentingthediscrepanciesinspendinggrowthissparseatbestinacademicplatforms,mostlyduetodataavailabilitytoassessspendingbyincomegroups.OnesuchanalysisisMoody’sAnalytics’,whichshowthattopearners–thetop10%ofUShouseholdsintermsofearnings
–drivenearlyhalfofallconsumerspending.Forthedetailsofthatanalysis,see
https://www.wsj.
com/economy/consumers/us-economy-strength-rich-spending-2c34a571?st=2odEgM&reflink=
article_copyURL_share
.TheMoody’sAnalyticsanalysispostdatesourinitialanalysiswhichshowsthedivergenceinspendingbetweenincomegroupsin
HaciogluHokeetal.
(
2024
).AnotherrelatedstudybytheBankofAmericaInstitutedocumentstheslowingpaceoflower-incomehouseholds’spending:
https:
///economic-insights/consumer-checkpoint-march-2024.html
.
Finally,MorningConsultanalysisalsodocumentsslowerspendingbylow-andmiddle-incomehouseholds:
/analysis/consumer-spending-september-2024
.
4
period.Thisresultcontradictsourpreviousfinding,usingdisaggregatedself-reportedhouseholdincome,thathigher-incomehouseholdsweretheonesdrivingconsumerspend-ingintheU.S.inthepost-pandemicperiodwhilelow-andmiddle-incomehouseholdspulledback.
Whenwelookintothesharesoflow-,middle-andhigh-incomehouseholdswholiveinlow-,middle-andhigh-incomezipcodes,wefindlargediscrepancies.In2024,only59%oflow-incomehouseholdslivedinzip-codesclassifiedashavinglowmedianhouseholdincome,whereastherestofthehouseholdslivingintheselow-incomezip-codeswereactuallymiddle-andhigh-incomehouseholds.Similarly,only32%ofhouseholdsthatlivedinhigh-incomezipcodesreportedhighincomesinNumeratordata;therestwerelowandmiddle-incomehouseholdsin2024.
Theuseofzipcodeincomeorotherhouseholdcharacteristicsasaproxyforindividualhouseholdattributeshasbeensubjecttoscrutiny,particularlyinthehealthliterature.Severalstudieshavehighlightedthepotentiallimitationsofthisapproach.Forinstance,
Geronimusetal.
(
1996
)exploresthechallengesassociatedwithusingaggregatecensus-basedvariablesasproxiesformicro-levelsocioeconomiccharacteristics.Similarly,
Hanley
andMorgan
(
2008
)utilizesCanadianadministrativedatatodemonstratethesignificantvariabilitybetweenhousehold-levelincomeandarea-basedincomemeasures.Morere-cently,
Buajittietal.
(
2020
),alsodrawingonCanadiandata,advisescautionwhenem-ployingarea-leveldataasindicatorsofindividualsocioeconomicstatus.Inthefieldofeconomics,
Geronimusetal.
(
1996
)standsoutasoneofthefewstudiestocriticallyex-aminetheuseofzip-codelevelmeasuresasproxiesforhouseholdcharacteristics.Theirfindingssuggestthatusingaggregateproxiesmayoverstatetheimpactofsocioeconomicfactorsonhealthoutcomeswhileinadequatelyaddressingconfoundingvariablesbetweensocioeconomiccharacteristics.Thesestudiescollectivelyunderscoretheimportanceofcarefullyconsideringthelimitationsandpotentialbiaseswhenusingaggregatedatatorepresentindividual-levelsocioeconomicinformation.
Ouranalysisbuildsuponrecentstudiesthatexamineconsumerspendingpatternsduringandafterthepandemicusingprivate-sectordata(see
Vavra
(
2021
)and
Brodeur
etal.
(
2021
)andthereferencestherein).Attheonsetofthepandemic,theEconomicTrackerdevelopedby
Chettyetal.
(
2023
)providedimportant,innovative,andtimely
5
high-frequencyestimatesofspendingcontributionsfromdifferentincomegroupsfrom
2020onward.Theiranalysis,whichusescreditcardspendingdata,illuminatedpotentialeconomicrisksandproxiedincomeusingmedianzip-codeincomefromtheACS.Anothernotablestudyby
Coxetal.
(
2020
)documentstheheterogeneouseffectsofthepandemiconhouseholdsusingbankaccountdata.Theiranalysisofspendingbyincomequartilesoffersinsightsintoexpendituredifferencesduringthepandemic’searlystages.However,astheauthorsacknowledge,theirstudywaslimitedbytheunavailabilityofmicro-dataonincomeatthetimeofwriting,necessitatingtheuseofpubliclyavailabledatatosimulateincomechangesinthepandemic’sinitialmonths.
Ourresearchcontributestothisgrowingbodyofliteratureinseveralways.First,weutilizeanewmicrodatasetthatdirectlycaptureshouseholds’self-reportedincomesandobservedspending.Second,weexplorespendingchangesacrossincomegroupsoveranextendedperiod,encompassingbothpre-andpost-pandemictimeframes.Third,wecomparetheimplicationsofusingdisaggregatedself-reportedhouseholdincomestoconstructincomegroupsversususingproxiedincomebasedonzipcodedatatoassesshowspendingchangesforlow-,middle-,andhigh-incomehouseholds.Furthermore,ouranalysiscanbeupdatedweekly,similarto
Chettyetal.
(
2023
)’sapproach,allowingforanearreal-timeassessmentofspendingdynamics.Theseuniquefeaturesenableustoreadilydetectchangesinspendingpatternsbydifferentincomegroupswithgreateraccuracyduringatimewhentheeconomyandconsumerspendingbehaviorsarebeingaffectedbyvariousshocks.
Therestofthepaperproceedsasfollows.Section
2
providesthedetailsoftheNu-meratordataandthereliabilityofourspendingmeasure.InSection
3
,weconstructtheseasonally-adjustedrealaverageretailspendingmeasuresforlow-,middle-,andhigh-incomehouseholdsbyself-reportedincomegroupsbetween2018and2024,andprovideadditionalevidencefortherobustnessofthedivergenceinspending.Section
4
insteaduseszip-codelevelaggregationtodecomposespendingbyincome.InSection
5
,wequan-tifythereportedversuszipcodeincomediscrepancyandSection
6
concludes.WeprovideadditionalanalysesandrobustnesschecksintheOnlineAppendix.
6
2Data
TheNumeratordatacontain150,000panelistswhoself-identifyastheprimaryshopperinthehouseholdandwhosetransactionsarecontinuousandcompleteforaperiodofatleast12months.These150,000panelistsareselectedfrommorethan1millionpanelistsinawaythatisdemographicallyandnationallyrepresentative.NumeratorprovidesweightsforhouseholdstoensureamatchwithCensusdemographicdataandtoensuretheirdetailedpurchases,whensummedbyretailerormanufacturer,alignwithquarterlyearningsreportsofmajorretailersandconsumerpackagedgoodscompanies.
Numeratorcollectsdatafromhouseholdsinseveralwaysusingamobilephoneapp.
First,consumerscanuploadpicturesoftheirpaperreceipts.Second,theycanallowNumeratortoscrapetheiremailsfordigitalreceipts.Third,userscanlinkloyaltyandmembershipaccountssotheirtransactionsareautomaticallyrecorded.
2
Numera-torcollectssurveyinformationonhouseholdincome,zipcode,age,education,householdsize,race/ethnicity,andvariousothermeasures.Panelists’identifiableinformationisanonymized.
TheNumeratordataallowfor16incomegroupingsbasedonpanelist’sself-reportincome.
3
Allpanelistsareresurveyedabouttheirhouseholdincomeapproximatelyevery12monthsandoftenmorefrequentlyifpanelistsreportlifeevents,suchasjobchanges,whenpromptedapproximatelyevery3months.Panelistsreportanychangestotheirincomegroupwhentheyarere-surveyed.Althoughtheremaybealagindetectingchangesinhouseholdincome,frequentsurveysprovideconfidencethatthemarginoferrorinaccountingforchangesinhouseholdincomeiswithinreasonablelimits.
ToestablishthereliabilityoftheaverageretailspendingmeasureweconstructusingNumeratordata,wecompareitagainstofficialstatisticspublishedforretailspending.Everymonth,theCensusBureaupublishestheMARTSreporttoprovideanestimateofretailsalesandfoodservicesspending.TopreparetheMARTSreport,theCensusBureaucollectsthedollarvalueofsalesdirectlyfromretailersbyfieldingestablishment-
2NumeratorcollectsthesedatafromhouseholdsusingamobilephoneappcalledReceiptHog.Pan-elistsarerewardeddirectlywithcoinsandwithvirtualspinsofaslotmachinethatalsorewardscoins,whichpanelistscanredeemforgiftcardsorforcashthroughPayPal.Onaverage,Numeratorrewardspanelistsapproximately$43peryearforprovidingtheirpurchaseinformationandcompletingsurveys.
3Theincomegroupsstartwith<$20Kandgoupto$100Kwith$10Kincrements.After$100K,theyincreasewith$25Kincrementsupto$250Kwiththelastgroupbeing$250K+.
7
levelsurveysandestimatingtotalresultsandtheresultsbytherelevantthree-digitNorthAmericanIndustryClassificationSystem(NAICS)categories.
TheNumeratorpaneldataincludeinformationonhouseholds’purchasesfrompaperreceipts,onlinereceipts,andtransactionrecords.Thepurchaseinformationcontainsthequantityandpriceofeachitempurchased,theoveralltotalonthereceipt,andwhereandwhenthepurchasetookplace.Thesedetailsallowustoclassifyhouseholds’spendingintotherelevantthree-digitNAICScategoriesforretailsalescategoriestoconstructaspendingmeasurecomparabletotheCensusBureau’sretailsalesmeasureintheMARTSreport.
4
Notethatourmeasureexcludesspendingonmotorvehiclesandparts,aspendingcategoryNumeratordatadonotcapture.
Figure
1
compareshowtheretailspendingmeasureweconstructusingNumeratordatacompareswiththeCensusBureau’spublishedseries.TheredlineindicatestheCensusBureau’spublishedseasonallyadjustedtotalretailsalesexcludingmotorvehiclesandparts.ThebluedashedlineistheretailspendingmeasureweconstructfromtheNumeratordata,whichweseasonallyadjustusingtheCensusBureau’sX13-ARIMA-SEATSpackage.
5
Thegraydash-dottedlineisthenon-seasonallyadjustedCensusseriesthatwethenseasonallyadjustusingthesameX13-ARIMA-SEATSmethodologyweuseforNumeratordata.ThepurposeofthegraylineistoshowthatourseasonaladjustmentmethodologyalignscloselywiththeCensusmethodology,andtherefore,thedifferencesbetweentheNumeratorseasonally-adjustedseriesandtheofficialCensusseasonally-adjustedseriesisnotduetodifferencesinseasonaladjustment.
6
Thecorrelationbe-
4These11spendingcategoriesareFurniture&homefurn.stores(NAICS442),Electronics&appliancestores(NAICS443),Buildingmaterial&gardeneq.&suppliesdealers(NAICS444),Food&beveragestores(NAICS445),Health&personalcarestores(NAICS446),Gasolinesta-tions(NAICS447),Clothing&clothingaccessoriesstores(NAICS448),Sportinggoods,hobby,musi-calinstrument,&bookstores(NAICS451),Generalmerchandisestores(NAICS452),Miscellaneousstoreretailers(NAICS453),Non-storeretailers(NAICS454),andFoodservices&drinkingplaces(NAICS722).AccordingtotheCensusBureau,theMARTSreportcoversfirmsclassifiedintheRe-tailTradeandFoodServicessectorsasdefinedbytheNorthAmericanIndustryClassificationSystem(NAICS).RetailTrade,asdefinedbyNAICSsectors44-45,includesestablishmentsengagedinsell-ingmerchandiseinsmallquantitiestothegeneralpublic,withouttransformation,andrenderingser-vicesincidentaltothesaleofmerchandise.Foodanddrinkingservicestofinalconsumers,subsector
722,isalsoincludedinthesurvey.Moreinformationonhowthedataarecollectedisavailableat
/retail/how_surveys_are_collected.html
.
5Inaddition,duetoachangeinNumeratormethodologystartinginApril2021,weapplyafixedlevel-correctiontotheNumeratorseriesforApril2021andonward.Thislevel-correctionisequivalenttoafixed-effectthataccountsforthechangeinNumerator’smethodology.
6ItisnotentirelypossibleforustoreplicatetheCensusBureau’sseasonaladjustmentmethodology.
8
Figure1:Realretailsales,totalexcludingmotorvehiclesandparts,constructedusing
CensusBureauestimatesandNumeratorpaneldata
125
115
Index,2019=100
105
95
85
2018201920202021202220232024
Censusseries,SACensusseries,usingauthors'SAmethodsNumeratorseries,usingauthors'SAmethods
Note:ThesolidredlineistheCensusBureau’sseasonallyadjustedretailsalesseriesexcludingmotorvehiclesandparts.ThedashedbluelineistheretailspendingmeasureweconstructusingtheNumeratordata,whichweseasonallyadjust.Thedashedgraylineisthenon-seasonallyadjustedCensusseriesthatwethenseasonallyadjust.ThedataaremonthlyfromJanuary2018throughDecember2024.Authors’seasonaladjustmentmethodusesX13-ARIMA-SEATS.InflationadjustmentusesthechainindexedPCEdeflatorforgoodsandfoodservicesexcludingmotorvehicles.Allthreelinesareindexedto100in2019.
tweentheNumeratorseriesandtheCensusBureau’sofficialseasonallyadjustedretailsalesseriesis0.94inlevelsand0.83whenlookingatmonthlypercentchanges.Figure
1
andthecorrelationofNumerator’sretailspendingmeasurewiththeofficiallypublishedretailsalesmeasureallowustoverifythatthebottom-upconstructionoftheNumera-tordata,capturedfromhouseholdpurchases,closelymatchesthetop-downconstructionoftheCensusBureau’sretailsalesseries,capturedfromsurveysofretailandfoodser-viceestablishments.Appendix
A
providesadditionalfiguresandreportscorrelationsforsub-spendingcategories.
Retailsalessubcategoriesareseasonallyadjustedseparately,sometimesevenatamoregranularlevel,andthencombinedtosumtothetotalretailsalesseriespublishedbytheCensusBureau.Thisisthemainreasonwhyweperformourownseasonaladjustment.Duetothetimespanofthedataandthereasonsexplainedabove,wecangetclosetobutcannotfullyreplicatetheofficiallypublishedseasonallyadjustedretailsalesseries.MoreinformationontheCensusBureau’sseasonaladjustmentcanbefoundat
/retail/marts/www/timeseries.html
.
9
3Spendingbyself-reportedincome
Thissectionreportsourfindingsonaverageretailspendingbyincome.Usingthecat-egoricalincomegroupsrecordedinNumeratordata,wedecomposeretailspending,thebluelineinFigure
1
,intospendingbylow-,middle-,andhigh-incomehouseholds.Wethenprovideadditionalevidenceforthevalidityofthedivergenceinspendingbetweenhigh-vslow-incomehouseholds.
3.1Averagehouseholdspendingbyincome
Figure
2
reportsgrowthsinceJanuary2018inaveragemonthlyhouseholdspending,adjustedforinflationandseasonality,overallandbythreeincomegroups:low(§0-§60Kinannualhouseholdincome),middle(§60K-§100K),andhigh(§100K+).
7
Figure2:Growthofaverageretailspendingdecomposedbyhouseholdincome
20
%Change,Jan2018=0
10
0
2018201920202021202220232024
AllGroupsLowIncome$0?60KMiddleIncome$60K?100KHighIncome$100K+
Note:ThedataaremonthlyfromJanuary2018throughDecember2024.AllseriesareadjustedforinflationusingthechainindexedPCEdeflatorforgoodsandfoodservicesexcludingmotorvehiclesandareshownasgrowthrelativetoJanuary
2018.AllseriesareseasonallyadjustedusingX13-ARIMA-SEATS.Solidpurple,dash-dottedgrayanddashedgreenlinesplotthespendingbylow-,middle-andhigh-incomehouseholds.
Thegrowthinaveragehouseholdretailspendingissimilaracrossallincomegroupsinthepre-pandemicera.Duringtheonsetofthepandemic,allhouseholds’spendingdeclined.Variousstudies,e.g.
Coxetal.
(
2020
),showthatspendingdeclineddueto
7Weselectthecutoffsforlow-,middle-,andhigh-incomegroupsbasedonthefollowingCensusBureaureportthatisbasedon2022incomes:
/library/publications/2023/demo/
p60-279.html
.Minormodificationstotheseincomegroupingsdonotchangeourqualitativeresults.
10
thedirecteffectsofpandemicratherthanalossofincome.Followingthedeclineinthe
beginningofthepandemic,averagehouseholdspendingforallincomegroupsbouncedback,reachinglevelshigherthanpre-pandemiclevelsashouseholdsspentpent-upsavingsandgovernment-providedstimuluspayments.
Duringthepandemicrecoveryperiodandshortlythereafter,low-incomehouseholdsappearedtobenefitmorefrompandemic-erastimulus.Inpercentageterms,low-incomehouseholdsincreasedtheirspendingbymorethanmiddleandhigh-incomehouseholdsin2020andearly2021.Thelargejumpintheaveragespendingoflow-incomehouseholdsinearly2021coincideswiththelaststimulusprogramwhichprovidedmorestimulus,asapercentageoftheirincome,tolow-incomeindividuals.Thefindingthatmiddle-andhigh-incomehouseholdsdidnotincreasetheirspendingasmuchaslow-incomehouseholdsaroundthetimeofthelaststimulusprograminMarch2021isconsistentwith
Chetty
etal.
(
2023
)’sfindings.
Despitesimilarpre-pandemicandearly-pandemictrends,thespendingbehavioroflow-andhigh-incomehouseholdsstartstodivergeinmid-2021.Betweenmid-2021andmid-2023,middle-andhigh-incomehouseholdsmaintainorincreasetheirrealaveragespending;low-incomehouseholdsreducetheirrealaveragespendingcomparedwithmid-2021levels.Sincemid-2023,low-,middle-,andhigh-incomehouseholdshaveallbeenincreasingtheirrealaveragespending.AsofDecember2024,realaveragespendingbylow-incomehouseholdsisup13.5%relativetoJanuary2018;spendingbymiddle-incomehouseholdsisup17.0%,andrealaveragespendingbyhigh-incomehouseholdsisup20.9%.
Whileouranalysisdoesnotofferevidenceforthedifferencesinspendingweobserveforlow-,middle-,andhigh-incomehouseholds,weofferafewhypothesesforwhythesedif-ferencesmayhaveemerged.First,low-incomehouseholdsdepletedpandemic-eraexcesssavingsearlierasdocumentedby
Abdelrahmanetal.
(
2024
).Second,governmentsup-portprograms–suchasSNAPemergencyallotments,enhancedunemploymentinsurance,andenhancedchildtaxcreditsthatdisproportionatelybenefitedlow-incomehouseholds–expiredandnolongerprovidedaboosttothesehouseholds’spending.Third,high-incomehouseholdsmighthaveexperiencedawealtheffectastheirhomesandinvestmentsin-creasedinvalue,whilealsoreceivingmoreinterestandinvestmentincomeduringperiodsofhigherinterestrates,providingastimulusforsustainedlevelsofspen
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年江蘇農(nóng)牧科技職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)帶答案詳解
- 2025廣東佛山市南海區(qū)國(guó)有資產(chǎn)監(jiān)督管理局財(cái)務(wù)總監(jiān)招聘1人筆試重點(diǎn)題庫(kù)及答案解析
- 2026年開封職業(yè)學(xué)院?jiǎn)握新殬I(yè)傾向性考試題庫(kù)附答案詳解
- 2026年山東文化產(chǎn)業(yè)職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試題庫(kù)及答案詳解一套
- 2026年廣西經(jīng)濟(jì)職業(yè)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)及參考答案詳解
- 2026年焦作師范高等??茖W(xué)校單招職業(yè)技能測(cè)試題庫(kù)帶答案詳解
- 2025四川雅安市滎經(jīng)縣縣屬國(guó)有企業(yè)招聘14人筆試重點(diǎn)試題及答案解析
- 2026年成都航空職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)及答案詳解1套
- 2026年河南女子職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試題庫(kù)參考答案詳解
- 2026年阿克蘇職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)帶答案詳解
- 蓄水池防水施工方案
- 動(dòng)物咬傷急救醫(yī)學(xué)課程課件
- 巨量千川營(yíng)銷師(初級(jí))認(rèn)證考試題(附答案)
- 《數(shù)字地圖之綜合》課件
- 《土木工程專業(yè)英語(yǔ) 第2版》 課件 Unit5 Composite Construction;Unit6 Introduction to Foundation Analysis and Design
- 《讓子彈飛》電影賞析
- 華北戰(zhàn)記-在中國(guó)發(fā)生的真實(shí)的戰(zhàn)爭(zhēng)-桑島節(jié)郎著
- 干細(xì)胞研究與臨床應(yīng)用
- 排澇泵站重建工程安全生產(chǎn)施工方案
- 敦煌的藝術(shù)智慧樹知到期末考試答案章節(jié)答案2024年北京大學(xué)
- (高清版)JTG 3363-2019 公路橋涵地基與基礎(chǔ)設(shè)計(jì)規(guī)范
評(píng)論
0/150
提交評(píng)論