版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.已知兩個相似三角形的面積比為4:9,則周長的比為()A.2:3 B.4:9C.3:2 D.2.某同學(xué)在解關(guān)于x的方程ax2+bx+c=0時,只抄對了a=1,b=﹣8,解出其中一個根是x=﹣1.他核對時發(fā)現(xiàn)所抄的c是原方程的c的相反數(shù),則原方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.有一個根是x=1 D.不存在實數(shù)根3.如圖,是⊙上的點,則圖中與相等的角是()A. B. C. D.4.如圖,AB,BC是⊙O的兩條弦,AO⊥BC,垂足為D,若⊙O的直徑為5,BC=4,則AB的長為()A.2 B.2 C.4 D.55.若關(guān)于x的一元二次方程有實數(shù)根,則實數(shù)k的取值范圍是()A. B. C.且 D.6.下列說法不正確的是()A.一組同旁內(nèi)角相等的平行四邊形是矩形B.一組鄰邊相等的菱形是正方形C.有三個角是直角的四邊形是矩形D.對角線相等的菱形是正方形7.拋物線y=ax2+bx+c上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:x
…
-2
-1
0
1
2
…
y
…
0
4
6
6
4
…
觀察上表,得出下面結(jié)論:①拋物線與x軸的一個交點為(3,0);②函數(shù)y=ax2+bx+C的最大值為6;③拋物線的對稱軸是x=;④在對稱軸左側(cè),y隨x增大而增大.其中正確有()A.1個 B.2個 C.3個 D.4個8.如圖圖形中,是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.9.△ABC中,∠C=90°,內(nèi)切圓與AB相切于點D,AD=2,BD=3,則△ABC的面積為()A.3 B.6 C.12 D.無法確定10.方程(m﹣1)x2﹣2mx+m﹣1=0中,當(dāng)m取什么范圍內(nèi)的值時,方程有兩個不相等的實數(shù)根?()A.m> B.m>且m≠1 C.m< D.m≠111.已知一元二次方程的較小根為x1,則下面對x1的估計正確的是A. B. C. D.12.已知關(guān)于x的方程x2-kx-6=0的一個根為x=-3,則實數(shù)k的值為()A.1 B.-1 C.2 D.-2二、填空題(每題4分,共24分)13.△ABC中,∠A=90°,AB=AC,以A為圓心的圓切BC于點D,若BC=12cm,則⊙A的半徑為_____cm.14.如圖,AD,BC相交于點O,AB∥CD.若AB=2,CD=3,則△ABO與△DCO的面積之比為_____.15.關(guān)于x的方程的解是,(a,m,b均為常數(shù),),則關(guān)于x的方程的解是________.16.兩個相似三角形的面積比為,其中較大的三角形的周長為,則較小的三角形的周長為__________.17.如圖,的直徑AB與弦CD相交于點,則______.18.在矩形ABCD中,P為CD邊上一點(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD'P,PD'的延長線交邊AB于點M,過點B作BN∥MP交DC于點N,連接AC,分別交PM,PB于點E,F(xiàn).現(xiàn)有以下結(jié)論:①連接DD',則AP垂直平分DD';②四邊形PMBN是菱形;③AD2=DP?PC;④若AD=2DP,則;其中正確的結(jié)論是_____(填寫所有正確結(jié)論的序號)三、解答題(共78分)19.(8分)先化簡,再求值:,其中x=1﹣.20.(8分)如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負(fù)半軸上取一點D,使OD=OC,且△ACD的面積是6,連接BC.(1)求m,k,n的值;(2)求△ABC的面積.21.(8分)已知:如圖,在△ABC中,AB=AC,點D、E分別在邊BC、DC上,AB2=BE·DC,DE:EC=3:1,F(xiàn)是邊AC上的一點,DF與AE交于點G.(1)找出圖中與△ACD相似的三角形,并說明理由;(2)當(dāng)DF平分∠ADC時,求DG:DF的值;(3)如圖,當(dāng)∠BAC=90°,且DF⊥AE時,求DG:DF的值.22.(10分)如圖,四邊形內(nèi)接于⊙,是⊙的直徑,,垂足為,平分.(1)求證:是⊙的切線;(2),,求的長.23.(10分)如圖,在△ABC中,CD⊥AB,DE⊥AC,DF⊥BC,垂足分別為D,E,F(xiàn).(1)求證:CE?CA=CF?CB;(2)EF交CD于點O,求證:△COE∽△FOD;24.(10分)如圖,拋物線交軸于兩點,交軸于點,點的坐標(biāo)為,直線經(jīng)過點.(1)求拋物線的函數(shù)表達(dá)式;(2)點是直線上方拋物線上的一動點,求面積的最大值并求出此時點的坐標(biāo);(3)過點的直線交直線于點,連接當(dāng)直線與直線的一個夾角等于的2倍時,請直接寫出點的坐標(biāo).25.(12分)在中,是邊上的中線,點在射線上,過點作交的延長線于點.(1)如圖1,點在邊上,與交于點證明:;(2)如圖2,點在的延長線上,與交于點.①求的值;②若,求的值26.意外創(chuàng)傷隨時可能發(fā)生,急救是否及時、妥善,直接關(guān)系到病人的安危.為普及急救科普知識,提高學(xué)生的急救意識與現(xiàn)場急救能力,某校開展了急救知識進(jìn)校園培訓(xùn)活動.為了解七、八年級學(xué)生(七、八年級各有600名學(xué)生)的培訓(xùn)效果,該校舉行了相關(guān)的急救知識競賽.現(xiàn)從兩個年級各隨機抽取20名學(xué)生的急救知識競賽成績(百.分制)進(jìn)行分析,過程如下:收集數(shù)據(jù):七年級:79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,1.八年級:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.整理數(shù)據(jù):40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年級010a71八年級1007b2分析數(shù)據(jù):平均數(shù)眾數(shù)中位數(shù)七年級7875c八年級78d80.5應(yīng)用數(shù)據(jù):(1)由上表填空:a=;b=;c=;d=.(2)估計該校七、八兩個年級學(xué)生在本次競賽中成績在80分及以上的共有多少人?(3)你認(rèn)為哪個年級的學(xué)生對急救知識掌握的總體水平較好,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、A【分析】由于相似三角形的面積比等于相似比的平方,已知了兩個相似三角形的面積比,即可求出它們的相似比;再根據(jù)相似三角形的周長比等于相似比即可得解.【詳解】∵兩個相似三角形的面積之比為4:9,
∴兩個相似三角形的相似比為2:1,
∴這兩個相似三角形的周長之比為2:1.故選A本題考查的是相似三角形的性質(zhì):相似三角形的周長比等于相似比,面積比等于相似比的平方.2、A【分析】直接把已知數(shù)據(jù)代入進(jìn)而得出c的值,再解方程根據(jù)根的判別式分析即可.【詳解】∵x=﹣1為方程x2﹣8x﹣c=0的根,1+8﹣c=0,解得c=9,∴原方程為x2-8x+9=0,∵=(﹣8)2-4×9>0,∴方程有兩個不相等的實數(shù)根.故選:A.本題考查一元二次方程的解、一元二次方程根的判別式,解題的關(guān)鍵是掌握一元二次方程根的判別式,對于一元二次方程,根的情況由來判別,當(dāng)>0時,方程有兩個不相等的實數(shù)根,當(dāng)=0時,方程有兩個相等的實數(shù)根,當(dāng)<0時,方程沒有實數(shù)根.3、D【分析】直接利用圓周角定理進(jìn)行判斷.【詳解】解:∵與都是所對的圓周角,∴.故選D.本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.4、A【分析】連接BO,根據(jù)垂徑定理得出BD,在△BOD中利用勾股定理解出OD,從而得出AD,在△ABD中利用勾股定理解出AB即可.【詳解】連接OB,∵AO⊥BC,AO過O,BC=4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD===,∴AD=OA+OD=+=4,在Rt△ADB中,由勾股定理得:AB===2,故選:A.本題考查圓的垂徑定理及勾股定理的應(yīng)用,關(guān)鍵在于熟練掌握相關(guān)的基礎(chǔ)性質(zhì).5、C【分析】根據(jù)方程根的情況可以判定其根的判別式的取值范圍,進(jìn)而可以得到關(guān)于k的不等式,解得即可,同時還應(yīng)注意二次項系數(shù)不能為1.【詳解】∵關(guān)于x的一元二次方程有實數(shù)根,∴△=b2-4ac≥1,即:1+3k≥1,解得:,∵關(guān)于x的一元二次方程kx2-2x+1=1中k≠1,故選:C.本題考查了一元二次方程根的判別式,解題的關(guān)鍵是了解根的判別式如何決定一元二次方程根的情況.6、B【分析】利用正方形的判定、平行四邊形的性質(zhì),矩形的判定分別判斷后即可確定正確的選項.【詳解】解:A、一組同旁內(nèi)角相等的平行四邊形是矩形,正確;B、一組鄰邊相等的矩形是正方形,錯誤;C、有三個角是直角的四邊形是矩形,正確;D、對角線相等的菱形是正方形,正確.故選B.本題考查了正方形的判定,平行四邊形的性質(zhì),矩形的判定,熟練運用這些性質(zhì)解決問題是本題的關(guān)鍵.7、C【解析】從表中可知,拋物線過(0,6),(1,6),所以可得拋物線的對稱軸是x=,故③正確.當(dāng)x=-2時,y=0,根據(jù)對稱性當(dāng)拋物線與x軸的另一個交點坐標(biāo)為x=×2+2=3.故①;當(dāng)x=2時,y=4,所以在對稱軸的右側(cè),隨著x增大,y在減小,所以拋物線開口向下.故其在頂點處取得最大值,應(yīng)大于6,故②錯,④對.選C.8、D【解析】試題解析:A、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉(zhuǎn)后它的兩部分能夠重合;即不滿足中心對稱圖形的定義,故此選項不合題意;B、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉(zhuǎn)后它的兩部分能夠重合;即不滿足中心對稱圖形的定義,故此選項不合題意;C、不是軸對稱圖形,因為找不到任何這樣的一條直線,沿這條直線對折后它的兩部分能夠重合;即不滿足軸對稱圖形的定義.是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,又是中心對稱圖形,故此選項符合題意;故選D.9、B【分析】易證得四邊形OECF是正方形,然后由切線長定理可得AC=2+r,BC=3+r,AB=5,根據(jù)勾股定理列方程即可求得答案.【詳解】如圖,設(shè)⊙O分別與邊BC、CA相切于點E、F,連接OE,OF,
∵⊙O分別與邊AB、BC、CA相切于點D、E、F,
∴DE⊥BC,DF⊥AC,AF=AD=2,BE=BD=3,
∴∠OEC=∠OFC=90°,
∵∠C=90°,
∴四邊形OECF是矩形,
∵OE=OF,
∴四邊形OECF是正方形,
設(shè)EC=FC=r,
∴AC=AF+FC=2+r,BC=BE+EC=3+r,AB=AD+BD=2+3=5,
在Rt△ABC中,=+,
∴=+,
∴,
即
解得:或(舍去).
∴⊙O的半徑r為1,∴.故選:B本題考查了三角形的內(nèi)切圓的性質(zhì)、正方形的判定與性質(zhì)、切線長定理以及勾股定理.注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.10、B【分析】由題意可知原方程的根的判別式△>0,由此可得關(guān)于m的不等式,求出不等式的解集后再結(jié)合方程的二次項系數(shù)不為0即可求出答案.【詳解】解:由題意可知:△=4m2﹣4(m﹣1)2>0,解得:∴m>,∵m﹣1≠0,∴m≠1,∴m的范圍是:m>且m≠1.故選:B.本題考查了一元二次方程的根的判別式和一元一次不等式的解法等知識,屬于基本題型,熟練掌握一元二次方程的根的判別式與方程根的個數(shù)的關(guān)系是解題關(guān)鍵.11、A【解析】試題分析:解得,∴較小根為.∵,∴.故選A.12、B【分析】一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.【詳解】解:因為x=-3是原方程的根,所以將x=-3代入原方程,即(-3)2+3k?6=0成立,解得k=-1.故選:B.本題考查的是一元二次方程的根即方程的解的定義,解題的關(guān)鍵是把方程的解代入進(jìn)行求解.二、填空題(每題4分,共24分)13、1.【分析】由切線性質(zhì)知AD⊥BC,根據(jù)AB=AC可得BD=CD=AD=BC=1.【詳解】解:如圖,連接AD,則AD⊥BC,∵AB=AC,∴BD=CD=AD=BC=1,故答案為:1.本題考查了圓的切線性質(zhì),解題的關(guān)鍵在于掌握圓的切線性質(zhì).14、【分析】由AB∥CD可得出∠A=∠D,∠B=∠C,進(jìn)而可得出△ABO∽△DCO,再利用相似三角形的性質(zhì)可求出△ABO與△DCO的面積之比.【詳解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∴.故答案為:.此題考查相似三角形的判定及性質(zhì),相似三角形的面積的比等于相似比的平方.15、x1=-12,x2=1【分析】把后面一個方程中的x+3看作一個整體,相當(dāng)于前面方程中的x來求解.【詳解】解:∵關(guān)于x的方程的解是,(a,m,b均為常數(shù),a≠0),∴方程變形為,即此方程中x+3=-9或x+3=11,解得x1=-12,x2=1,故方程的解為x1=-12,x2=1.故答案為x1=-12,x2=1.此題主要考查了方程解的含義.注意觀察兩個方程的特點,運用整體思想進(jìn)行簡便計算.16、1【分析】根據(jù)面積之比得出相似比,然后利用周長之比等于相似比即可得出答案.【詳解】∵兩個相似三角形的面積比為∴兩個相似三角形的相似比為∴兩個相似三角形的周長也比為∵較大的三角形的周長為∴較小的三角形的周長為故答案為:1.本題主要考查相似三角形的性質(zhì),掌握相似三角形的性質(zhì)是解題的關(guān)鍵.17、【解析】分析:由已知條件易得△ACB中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,結(jié)合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.詳解:∵AB是的直徑,∴∠ACB=90°,又∵AC=3,AB=5,∴BC=,∴tan∠ABC=,又∵∠ADC=∠ABC,∴tan∠ADC=.故答案為:.點睛:熟記“圓的相關(guān)性質(zhì)和正切函數(shù)的定義”解得本題的關(guān)鍵.18、①②③【分析】根據(jù)折疊的性質(zhì)得出AP垂直平分DD',判斷出①正確.過點P作PG⊥AB于點G,易知四邊形DPGA,四邊形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易證△APG∽△PBG,所以PG2=AG?GB,即AD2=DP?PC判斷出③正確;DP∥AB,所以∠DPA=∠PAM,由題意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,從而可知PM=MB=AM,又易證四邊形PMBN是平行四邊形,所以四邊形PMBN是菱形;判斷出②正確;由于,可設(shè)DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,從而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,從而可證△PCF∽△BAF,△PCE∽△MAE,從而可得,,從而可求出EF=AF﹣AE=AC﹣=AC,從而可得,判斷出④錯誤.【詳解】解:∵將△ADP沿AP翻折得到△AD'P,∴AP垂直平分DD',故①正確;解法一:過點P作PG⊥AB于點G,∴易知四邊形DPGA,四邊形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG?GB,即AD2=DP?PC;解法二:易證:△ADP∽△PCB,∴,由于AD=CB,∴AD2=DP?PC;故③正確;∵DP∥AB,∴∠DPA=∠PAM,由題意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易證四邊形PMBN是平行四邊形,∴四邊形PMBN是菱形;故②正確;由于,可設(shè)DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG?GB,∴4=1?GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴,∴又易證:△PCE∽△MAE,AM=AB=∴,∴,∴EF=AF﹣AE=AC﹣=AC∴,故④錯誤,即:正確的有①②③,故答案為:①②③.本題是一道關(guān)于矩形折疊的綜合題目,考查的知識點有折疊的性質(zhì),矩形的性質(zhì),相似三角形的性質(zhì),菱形的判定等,此題充分考查了學(xué)生對所學(xué)知識點的掌握情況以及綜合利用能力,是一道很好的題目.三、解答題(共78分)19、1﹣x,原式=.【分析】先利用分式的加減乘除運算對分式進(jìn)行化簡,然后把x的值代入即可.【詳解】原式=當(dāng)x=1﹣時,∴原式=1﹣(1﹣)=;本題主要考查分式的化簡求值,掌握分式混合運算的順序和法則是解題的關(guān)鍵.20、(1)m=1,k=8,n=1;(2)△ABC的面積為1.【解析】試題分析:(1)由點A的縱坐標(biāo)為2知OC=2,由OD=OC知OD=1、CD=3,根據(jù)△ACD的面積為6求得m=1,將A的坐標(biāo)代入函數(shù)解析式求得k,將點B坐標(biāo)代入函數(shù)解析式求得n;(2)作BE⊥AC,得BE=2,根據(jù)三角形面積公式求解可得.試題解析:(1)∵點A的坐標(biāo)為(m,2),AC平行于x軸,∴OC=2,AC⊥y軸,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面積為6,∴CD?AC=6,∴AC=1,即m=1,則點A的坐標(biāo)為(1,2),將其代入y=可得k=8,∵點B(2,n)在y=的圖象上,∴n=1;(2)如圖,過點B作BE⊥AC于點E,則BE=2,∴S△ABC=AC?BE=×1×2=1,即△ABC的面積為1.考點:反比例函數(shù)與一次函數(shù)的交點問題.21、(1)△ABE、△ADC,理由見解析;(2);(3)【分析】(1)根據(jù)相似三角形的判定方法,即可找出與△ACD相似的三角形;(2)由相似三角形的性質(zhì),得,由DE=3CE,先求出AD的長度,然后計算得到;(3)由等腰直角三角形的性質(zhì),得到∠DAG=∠ADF=45°,然后證明△ADE∽△DFA,得到,求出DF的長度,即可得到.【詳解】解:(1)與△ACD相似的三角形有:△ABE、△ADC,理由如下:∵AB2=BE·DC,∴.∵AB=AC,∴∠B=∠C,,∴△ABE∽△DCA.∴∠AED=∠DAC.∵∠AED=∠C+∠EAC,∠DAC=∠DAE+∠EAC,∴∠DAE=∠C.∴△ADE∽△CDA.(2)∵△ADE∽△CDA,DF平分∠ADC,∴,設(shè)CE=a,則DE=3CE=3a,CD=4a,∴,解得(負(fù)值已舍)∴;(3)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∴∠DAE=∠C=45°,∵DG⊥AE,∴∠DAG=∠ADF=45°,∴AG=DG=,∴,∵∠AED=∠DAC,∴△ADE∽△DFA,∴,∴,∴.本題考查了相似三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),勾股定理,解題的關(guān)鍵是熟練掌握相似三角形的判定和性質(zhì),正確找出證明三角形相似的條件.22、(1)見解析;(2)【分析】(1)連接OA,根據(jù)角平分線的定義及等腰三角形的性質(zhì)得出,從而有,再通過得出,即,則結(jié)論可證;(2)根據(jù)得,再利用角平分線的定義和直角三角形兩銳角互余得出,然后利用含30°的直角三角形的性質(zhì)和勾股定理即可求出AE的長度.【詳解】(1)證明:連接,平分,.,,,,,,,,∴AE是⊙O的切線;(2)是直徑,.又,,.∵DA平分,,.在中,,.在中,,,.本題主要考查角平分線的定義,等腰三角形的性質(zhì),切線的判定,勾股定理,含30°的直角三角形的性質(zhì),掌握角平分線的定義,等腰三角形的性質(zhì),切線的判定,勾股定理,含30°的直角三角形的性質(zhì)是解題的關(guān)鍵.23、(1)證明見解析;(2)證明見解析【分析】(1)本題首先根據(jù)垂直性質(zhì)以及公共角分別求證△CED∽△CDA,△CDF∽△CBD,繼而以為中間變量進(jìn)行等量替換證明本題.(2)本題以第一問結(jié)論為前提證明△CEF∽△CBA,繼而根據(jù)垂直性質(zhì)證明∠OFD=∠ECO,最后利用“角角”判定證明相似.【詳解】(1)由已知得:∠CED=∠CDA=90°,∠ECD=∠DCA,∴△CED∽△CDA,∴,即CD2=CE?CA,又∵∠CFD=∠CDB=90°,∠FCD=∠DCB,∴△CDF∽△CBD,∴,即CD2=CB?CF,則CA?CE=CB?CF;(2)∵CA?CE=CB?CF,∴,又∵∠ECF=∠BCA,∴△CEF∽△CBA,∴∠CFE=∠A,∵∠CFE+∠OFD=∠A+∠ECO=90°,∴∠OFD=∠ECO,又∵∠COE=∠FOD,∴△COE∽△FOD.本題考查相似的判定與性質(zhì)綜合,相似判定難點首先在于確定哪兩個三角形相似,其次是判定定理的選擇,相似判定常用“角角”定理,另外需注意相似圖形其潛在信息點是邊的比例關(guān)系以及角等.24、(1);(2)當(dāng)時,有最大值,最大值為,點坐標(biāo)為;(3)點的坐標(biāo)或.【分析】(1)利用點B的坐標(biāo),用待定系數(shù)法即可求出拋物線的函數(shù)表達(dá)式;(2)如圖1,過點P作軸,交BC于點H,設(shè),H,求出的面積即可求解;(3)如圖2,作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于,交AC于E,利用等腰三角形的性質(zhì)和三角形外角性質(zhì)得到,再確定N(3,?2),AC的解析式為y=5x?5,E點坐標(biāo)為,利用兩直線垂直的問題可設(shè)直線的解析式為,把E代入求出b,得到直線的解析式為,則解方程組得點的坐標(biāo);作點關(guān)于N點的對稱點,利用對稱性得到,設(shè),根據(jù)中點坐標(biāo)公式得到,然后求出x即可得到的坐標(biāo),從而得到滿足條件的點M的坐標(biāo).【詳解】(1)把代入得;(2)過點P作軸,交BC于點H,設(shè),則點H的坐標(biāo)為,∴,∴,∴當(dāng)時,有最大值,最大值為,此時點坐標(biāo)為.(3)作AN⊥BC于N,NH⊥x軸于H,作AC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療器械維護(hù)與保養(yǎng)
- 2026年湖南國防工業(yè)職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)筆試模擬試題帶答案解析
- 2026年湖南三一工業(yè)職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)筆試備考題庫帶答案解析
- 2026年鄂爾多斯生態(tài)環(huán)境職業(yè)學(xué)院單招綜合素質(zhì)筆試備考題庫帶答案解析
- 2026年廣西工程職業(yè)學(xué)院單招綜合素質(zhì)筆試參考題庫帶答案解析
- 臨床護(hù)理技能提升策略解析
- 2026年貴州工程職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試模擬試題帶答案解析
- 2026年安徽衛(wèi)生健康職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性考試備考題庫有答案解析
- 2026年鄭州城建職業(yè)學(xué)院單招職業(yè)技能考試參考題庫附答案詳解
- 互聯(lián)網(wǎng)醫(yī)療與慢性病管理
- 2025年浙江杭州市水務(wù)集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 醫(yī)學(xué)倫理與倫理倫理
- 《醫(yī)療機構(gòu)胰島素安全使用管理規(guī)范》
- 華師福建 八下 數(shù)學(xué) 第18章 平行四邊形《平行四邊形的判定 第1課時 用邊的關(guān)系判定平行四邊形》課件
- 特殊作業(yè)安全管理監(jiān)護(hù)人專項培訓(xùn)課件
- 電梯日管控、周排查、月調(diào)度內(nèi)容表格
- TCASME 1598-2024 家族辦公室架構(gòu)師職業(yè)技能等級
- 人教版三年級上冊《生命-生態(tài)-安全》全冊教案(及計劃)
- 電能表修校工(高級技師)技能認(rèn)證理論考試總題及答案
- 長塘水庫工程環(huán)評報告書
- 工程建設(shè)公司QC小組提高型鋼混凝土柱預(yù)埋地腳螺栓一次施工合格率成果匯報書
評論
0/150
提交評論