版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
裝訂線裝訂線PAGE2第1頁(yè),共8頁(yè)許昌陶瓷職業(yè)學(xué)院《插畫設(shè)計(jì)B》
2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺的圖像生成任務(wù)中,假設(shè)要生成具有真實(shí)感的自然圖像。以下關(guān)于圖像生成方法的描述,正確的是:()A.生成對(duì)抗網(wǎng)絡(luò)(GAN)能夠生成逼真的圖像,但訓(xùn)練過程不穩(wěn)定,容易模式崩潰B.變分自編碼器(VAE)生成的圖像多樣性好,但真實(shí)感不如GAN生成的圖像C.自回歸模型在圖像生成中效率高,能夠快速生成高質(zhì)量的圖像D.所有的圖像生成方法都能夠生成與真實(shí)世界完全一致的圖像2、計(jì)算機(jī)視覺在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中有著重要的應(yīng)用。假設(shè)要在VR游戲中實(shí)現(xiàn)真實(shí)的場(chǎng)景交互。以下關(guān)于計(jì)算機(jī)視覺在VR/AR中的描述,哪一項(xiàng)是不正確的?()A.可以通過對(duì)用戶的動(dòng)作和姿態(tài)進(jìn)行識(shí)別,實(shí)現(xiàn)自然的交互操作B.能夠?qū)⑻摂M物體與真實(shí)場(chǎng)景進(jìn)行準(zhǔn)確的融合和匹配C.計(jì)算機(jī)視覺技術(shù)可以提高VR/AR體驗(yàn)的沉浸感和真實(shí)感D.VR/AR中的計(jì)算機(jī)視覺應(yīng)用不存在任何技術(shù)挑戰(zhàn)和限制3、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,假設(shè)要在一段視頻中持續(xù)跟蹤一個(gè)移動(dòng)的物體,例如跟蹤一只飛行的鳥。物體可能會(huì)被其他物體遮擋,并且外觀可能會(huì)發(fā)生變化。以下哪種目標(biāo)跟蹤方法在這種復(fù)雜情況下更有可能成功?()A.基于卡爾曼濾波的跟蹤方法,預(yù)測(cè)物體的位置和速度B.基于深度學(xué)習(xí)的Siamese網(wǎng)絡(luò)跟蹤方法C.只在視頻的起始幀確定目標(biāo)位置,后續(xù)幀不再跟蹤D.隨機(jī)選擇視頻中的區(qū)域作為跟蹤目標(biāo)4、計(jì)算機(jī)視覺中的行人檢測(cè)是智能監(jiān)控系統(tǒng)中的重要任務(wù)。假設(shè)要在一個(gè)擁擠的公共場(chǎng)所中準(zhǔn)確檢測(cè)出行人,同時(shí)要排除其他類似物體的干擾。以下哪種行人檢測(cè)方法在這種復(fù)雜環(huán)境下具有更高的檢測(cè)率和較低的誤檢率?()A.基于HOG特征的行人檢測(cè)B.基于深度學(xué)習(xí)的行人檢測(cè)C.基于運(yùn)動(dòng)信息的行人檢測(cè)D.基于形狀模板的行人檢測(cè)5、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別是對(duì)視頻中的人體動(dòng)作進(jìn)行分類和理解。假設(shè)我們要分析一段體育比賽的視頻,識(shí)別其中運(yùn)動(dòng)員的各種動(dòng)作,以下哪種方法能夠有效地捕捉動(dòng)作的時(shí)空特征?()A.基于手工特征和分類器的方法B.基于深度學(xué)習(xí)的時(shí)空卷積網(wǎng)絡(luò)C.基于光流和軌跡的方法D.基于隱馬爾可夫模型的方法6、圖像去模糊是計(jì)算機(jī)視覺中的一個(gè)難題。假設(shè)一張圖像由于相機(jī)抖動(dòng)而產(chǎn)生模糊,以下哪種去模糊方法可能需要對(duì)模糊核有較為準(zhǔn)確的估計(jì)?()A.基于深度學(xué)習(xí)的去模糊方法B.盲去卷積方法C.維納濾波去模糊方法D.均值濾波去模糊方法7、計(jì)算機(jī)視覺中的特征提取是非常關(guān)鍵的一步。以下關(guān)于特征提取方法的描述,不準(zhǔn)確的是()A.傳統(tǒng)的特征提取方法如SIFT(尺度不變特征變換)和HOG(方向梯度直方圖)在特定場(chǎng)景下仍然有效B.深度學(xué)習(xí)中的自動(dòng)特征提取能夠?qū)W習(xí)到更具代表性和魯棒性的特征C.特征提取的好壞直接影響后續(xù)的圖像分類、目標(biāo)檢測(cè)等任務(wù)的性能D.特征提取只關(guān)注圖像的局部信息,而忽略了全局信息8、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,假設(shè)要從海量的圖像庫(kù)中快速找到與給定圖像相似的圖像。以下關(guān)于圖像特征表示的選擇,哪一項(xiàng)是需要重點(diǎn)考慮的?()A.選擇具有高維度的特征向量,包含豐富的圖像信息B.采用低維度但具有區(qū)分性的特征表示,提高檢索效率C.忽略特征的維度和區(qū)分性,隨機(jī)選擇一種特征表示D.只使用圖像的顏色特征,忽略形狀和紋理等特征9、計(jì)算機(jī)視覺在自動(dòng)駕駛領(lǐng)域有重要應(yīng)用。假設(shè)要開發(fā)一個(gè)能夠識(shí)別道路標(biāo)志的系統(tǒng),以下關(guān)于應(yīng)對(duì)不同光照條件的策略,哪一項(xiàng)是最為有效的?()A.使用固定的閾值對(duì)圖像進(jìn)行二值化處理B.采用自適應(yīng)的圖像增強(qiáng)算法,根據(jù)光照情況調(diào)整圖像C.忽略光照變化,依靠模型的泛化能力D.只在特定的光照條件下收集訓(xùn)練數(shù)據(jù)10、在計(jì)算機(jī)視覺的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不變特征變換)特征是一種經(jīng)典的方法。假設(shè)我們要對(duì)一組包含不同視角和縮放比例的物體圖像進(jìn)行匹配,SIFT特征的哪個(gè)特性使其在這種情況下表現(xiàn)出色?()A.對(duì)旋轉(zhuǎn)和尺度變化具有不變性B.計(jì)算速度快,效率高C.特征維度低,易于存儲(chǔ)和處理D.對(duì)光照變化不敏感11、在計(jì)算機(jī)視覺中,圖像生成是創(chuàng)建新的圖像內(nèi)容。以下關(guān)于圖像生成的說法,錯(cuò)誤的是()A.可以通過生成對(duì)抗網(wǎng)絡(luò)(GAN)、變分自編碼器(VAE)等模型進(jìn)行圖像生成B.圖像生成可以用于藝術(shù)創(chuàng)作、數(shù)據(jù)增強(qiáng)和虛擬場(chǎng)景構(gòu)建等任務(wù)C.生成的圖像質(zhì)量和真實(shí)性在不斷提高,但仍然存在一些缺陷和不完美之處D.圖像生成可以完全根據(jù)用戶的任意想象生成任何內(nèi)容,不受任何限制12、計(jì)算機(jī)視覺中的光流估計(jì)是計(jì)算圖像中像素的運(yùn)動(dòng)信息。以下關(guān)于光流估計(jì)的敘述,不正確的是()A.光流估計(jì)可以用于視頻中的運(yùn)動(dòng)分析、目標(biāo)跟蹤和動(dòng)作識(shí)別等任務(wù)B.基于深度學(xué)習(xí)的光流估計(jì)方法在精度和速度上都有了很大的提升C.光流估計(jì)只對(duì)勻速運(yùn)動(dòng)的物體有效,對(duì)于復(fù)雜的非勻速運(yùn)動(dòng)估計(jì)不準(zhǔn)確D.光流估計(jì)的結(jié)果可以為后續(xù)的計(jì)算機(jī)視覺任務(wù)提供重要的運(yùn)動(dòng)線索13、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別是一個(gè)具有挑戰(zhàn)性的任務(wù)。假設(shè)要識(shí)別一段體育比賽視頻中的運(yùn)動(dòng)員動(dòng)作,以下關(guān)于特征選擇的方法,哪一項(xiàng)是不太可行的?()A.提取運(yùn)動(dòng)員的身體輪廓和關(guān)節(jié)位置作為特征B.僅使用視頻的音頻信息來判斷運(yùn)動(dòng)員的動(dòng)作C.計(jì)算視頻幀之間的光流變化作為動(dòng)作特征D.結(jié)合空間和時(shí)間維度的特征來描述動(dòng)作14、對(duì)于視頻中的目標(biāo)跟蹤任務(wù),假設(shè)目標(biāo)在視頻中經(jīng)歷了快速的外觀變化和嚴(yán)重的遮擋。以下哪種策略有助于保持跟蹤的準(zhǔn)確性和穩(wěn)定性?()A.結(jié)合目標(biāo)的運(yùn)動(dòng)模型和外觀模型進(jìn)行預(yù)測(cè)B.僅依賴目標(biāo)的初始外觀特征進(jìn)行跟蹤C(jī).當(dāng)出現(xiàn)遮擋時(shí),停止跟蹤并等待目標(biāo)重新出現(xiàn)D.隨機(jī)調(diào)整跟蹤算法的參數(shù)15、在計(jì)算機(jī)視覺的人物姿態(tài)估計(jì)任務(wù)中,需要確定圖像中人物的關(guān)節(jié)位置和姿態(tài)。假設(shè)要開發(fā)一個(gè)用于健身應(yīng)用的姿態(tài)估計(jì)系統(tǒng),以下關(guān)于模型訓(xùn)練數(shù)據(jù)的獲取,哪一項(xiàng)是比較困難的?()A.從公開的數(shù)據(jù)集獲取大量的人物姿態(tài)圖像B.自己拍攝不同人群在各種健身動(dòng)作下的圖像C.利用合成數(shù)據(jù)生成多樣化的人物姿態(tài)樣本D.從社交媒體上收集用戶分享的健身照片16、計(jì)算機(jī)視覺中的人臉識(shí)別技術(shù)應(yīng)用廣泛。假設(shè)要在一個(gè)門禁系統(tǒng)中實(shí)現(xiàn)準(zhǔn)確的人臉識(shí)別,以下關(guān)于人臉識(shí)別方法的描述,正確的是:()A.基于幾何特征的人臉識(shí)別方法對(duì)姿態(tài)和光照變化具有很強(qiáng)的魯棒性B.基于模板匹配的方法能夠處理大規(guī)模的人臉數(shù)據(jù)庫(kù),并且識(shí)別速度快C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在人臉識(shí)別中能夠?qū)W習(xí)到更具判別性的特征,但容易受到數(shù)據(jù)偏差的影響D.人臉識(shí)別系統(tǒng)一旦訓(xùn)練完成,就不需要更新和優(yōu)化,能夠一直保持高準(zhǔn)確率17、計(jì)算機(jī)視覺在安防監(jiān)控領(lǐng)域有重要應(yīng)用。假設(shè)要通過攝像頭監(jiān)控一個(gè)公共場(chǎng)所,以下關(guān)于計(jì)算機(jī)視覺在安防監(jiān)控中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以實(shí)時(shí)檢測(cè)異常行為,如人群聚集、奔跑等B.能夠?qū)θ藛T進(jìn)行身份識(shí)別和認(rèn)證C.計(jì)算機(jī)視覺系統(tǒng)可以獨(dú)立完成所有的安防監(jiān)控任務(wù),不需要人工干預(yù)D.與其他安防設(shè)備和系統(tǒng)集成,提高整體的安全性和防范能力18、在醫(yī)學(xué)圖像分析中,計(jì)算機(jī)視覺技術(shù)有助于疾病的診斷和治療。假設(shè)醫(yī)生需要對(duì)一組肺部CT圖像進(jìn)行分析,以檢測(cè)是否存在腫瘤。以下關(guān)于醫(yī)學(xué)圖像分析中的計(jì)算機(jī)視覺的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.計(jì)算機(jī)視覺算法可以自動(dòng)檢測(cè)和定位肺部腫瘤,提高診斷的效率和準(zhǔn)確性B.能夠?qū)D像進(jìn)行增強(qiáng)和預(yù)處理,突出病變區(qū)域,便于醫(yī)生觀察和判斷C.由于醫(yī)學(xué)圖像的復(fù)雜性和個(gè)體差異,計(jì)算機(jī)視覺的結(jié)果總是完全準(zhǔn)確無誤的D.可以通過大量標(biāo)注的醫(yī)學(xué)圖像數(shù)據(jù)進(jìn)行訓(xùn)練,學(xué)習(xí)正常和異常的圖像特征19、在計(jì)算機(jī)視覺的圖像增強(qiáng)任務(wù)中,旨在改善圖像的質(zhì)量。假設(shè)一張低光照條件下拍攝的照片需要增強(qiáng)。以下關(guān)于圖像增強(qiáng)方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過直方圖均衡化方法增強(qiáng)圖像的對(duì)比度B.基于濾波的方法能夠去除圖像中的噪聲,同時(shí)增強(qiáng)細(xì)節(jié)C.圖像增強(qiáng)可以無限制地提高圖像的質(zhì)量,不存在過度增強(qiáng)的問題D.深度學(xué)習(xí)中的生成對(duì)抗網(wǎng)絡(luò)(GAN)也可以用于圖像增強(qiáng)20、在計(jì)算機(jī)視覺的圖像超分辨率任務(wù)中,假設(shè)要將一張低分辨率圖像恢復(fù)為高分辨率圖像。以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的方法簡(jiǎn)單快速,但恢復(fù)出的圖像細(xì)節(jié)不夠清晰B.基于深度學(xué)習(xí)的方法能夠生成逼真的高分辨率圖像,但需要大量的訓(xùn)練數(shù)據(jù)和計(jì)算資源C.圖像超分辨率技術(shù)可以無限制地提高圖像的分辨率,不受硬件限制D.所有的圖像超分辨率方法都能夠完全恢復(fù)出原始高分辨率圖像的所有信息21、計(jì)算機(jī)視覺在自動(dòng)駕駛領(lǐng)域有著至關(guān)重要的應(yīng)用。假設(shè)一輛自動(dòng)駕駛汽車正在道路上行駛,需要識(shí)別各種交通標(biāo)志和障礙物。以下關(guān)于自動(dòng)駕駛中計(jì)算機(jī)視覺任務(wù)的描述,正確的是:()A.只需對(duì)前方物體進(jìn)行簡(jiǎn)單的圖像分類,就能實(shí)現(xiàn)安全的自動(dòng)駕駛B.準(zhǔn)確的目標(biāo)檢測(cè)和語(yǔ)義分割對(duì)于理解復(fù)雜的道路場(chǎng)景至關(guān)重要C.計(jì)算機(jī)視覺在自動(dòng)駕駛中作用不大,主要依靠其他傳感器如雷達(dá)D.對(duì)于交通標(biāo)志的識(shí)別,顏色信息比形狀和圖案信息更重要22、在計(jì)算機(jī)視覺的醫(yī)學(xué)影像分析中,例如對(duì)腫瘤的檢測(cè)和分割,需要高精度和可靠性。假設(shè)我們有一組磁共振成像(MRI)數(shù)據(jù),以下哪種技術(shù)能夠有效地輔助醫(yī)生進(jìn)行準(zhǔn)確的診斷和治療規(guī)劃?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學(xué)習(xí)的分割網(wǎng)絡(luò),結(jié)合多模態(tài)數(shù)據(jù)C.基于聚類和分類的方法D.基于形態(tài)學(xué)操作和閾值分割的方法23、計(jì)算機(jī)視覺中的場(chǎng)景理解是對(duì)整個(gè)圖像場(chǎng)景的語(yǔ)義和結(jié)構(gòu)進(jìn)行分析和理解。以下關(guān)于場(chǎng)景理解的描述,不準(zhǔn)確的是()A.場(chǎng)景理解需要綜合考慮物體、空間關(guān)系、上下文信息等多個(gè)方面B.可以通過構(gòu)建場(chǎng)景圖來表示場(chǎng)景中的實(shí)體和關(guān)系,輔助場(chǎng)景理解C.場(chǎng)景理解在智能導(dǎo)航、虛擬環(huán)境構(gòu)建和圖像編輯等領(lǐng)域具有潛在的應(yīng)用價(jià)值D.場(chǎng)景理解是一個(gè)已經(jīng)完全解決的問題,不存在任何技術(shù)難題24、在圖像去噪中,BM3D(Block-Matchingand3DFiltering)算法的優(yōu)勢(shì)在于()A.去噪效果好B.保持圖像細(xì)節(jié)C.計(jì)算效率高D.以上都是25、計(jì)算機(jī)視覺中的無人駕駛技術(shù)是一個(gè)綜合性的應(yīng)用領(lǐng)域。以下關(guān)于無人駕駛中的計(jì)算機(jī)視覺的說法,不正確的是()A.計(jì)算機(jī)視覺在無人駕駛中用于環(huán)境感知、目標(biāo)檢測(cè)、路徑規(guī)劃和障礙物避讓等任務(wù)B.深度學(xué)習(xí)方法能夠?qū)崟r(shí)準(zhǔn)確地識(shí)別道路標(biāo)志、車輛和行人等物體C.無人駕駛中的計(jì)算機(jī)視覺系統(tǒng)已經(jīng)非常成熟,能夠應(yīng)對(duì)各種復(fù)雜的交通場(chǎng)景D.惡劣天氣條件和光照變化等因素仍然是無人駕駛中計(jì)算機(jī)視覺面臨的挑戰(zhàn)26、對(duì)于圖像分類任務(wù),假設(shè)需要對(duì)大量的自然風(fēng)景圖像進(jìn)行分類,包括山脈、森林、海灘和沙漠等場(chǎng)景。這些圖像在光照、拍攝角度和季節(jié)等方面存在較大差異。為了提高圖像分類的準(zhǔn)確性和泛化能力,以下哪種策略是至關(guān)重要的?()A.增加數(shù)據(jù)增強(qiáng)操作,如旋轉(zhuǎn)、翻轉(zhuǎn)和顏色變換B.只使用少量具有代表性的圖像進(jìn)行訓(xùn)練C.選擇簡(jiǎn)單的分類模型,避免過擬合D.不進(jìn)行任何預(yù)處理,直接使用原始圖像訓(xùn)練模型27、計(jì)算機(jī)視覺在工業(yè)檢測(cè)中的應(yīng)用越來越廣泛。假設(shè)要檢測(cè)電子電路板上的微小缺陷,以下哪種圖像采集設(shè)備可能提供更高的分辨率和精度?()A.普通數(shù)碼相機(jī)B.工業(yè)線陣相機(jī)C.手機(jī)攝像頭D.監(jiān)控?cái)z像頭28、在計(jì)算機(jī)視覺的圖像生成任務(wù)中,假設(shè)要生成逼真的人臉圖像。以下關(guān)于生成模型的架構(gòu)選擇,哪一項(xiàng)是需要特別關(guān)注的?()A.選擇傳統(tǒng)的多層感知機(jī)(MLP)架構(gòu)B.采用生成對(duì)抗網(wǎng)絡(luò)(GAN)架構(gòu),通過對(duì)抗訓(xùn)練生成高質(zhì)量圖像C.運(yùn)用卷積神經(jīng)網(wǎng)絡(luò)(CNN)架構(gòu),但不使用池化層D.構(gòu)建循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)架構(gòu),處理圖像的序列信息29、計(jì)算機(jī)視覺中的視覺跟蹤在監(jiān)控、機(jī)器人導(dǎo)航等領(lǐng)域有廣泛應(yīng)用。假設(shè)一個(gè)機(jī)器人需要跟蹤一個(gè)移動(dòng)的物體,同時(shí)適應(yīng)物體的外觀變化和環(huán)境干擾。以下哪種視覺跟蹤方法能夠提供較好的長(zhǎng)期跟蹤性能和魯棒性?()A.基于核相關(guān)濾波的跟蹤方法B.基于深度學(xué)習(xí)的孿生網(wǎng)絡(luò)跟蹤方法C.基于粒子濾波和特征匹配的跟蹤方法D.基于背景減除和運(yùn)動(dòng)估計(jì)的跟蹤方法30、計(jì)算機(jī)視覺中的姿態(tài)估計(jì)任務(wù),確定物體在空間中的位置和方向。假設(shè)要估計(jì)一個(gè)機(jī)器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計(jì)方法的描述,正確的是:()A.基于幾何模型的姿態(tài)估計(jì)方法在復(fù)雜環(huán)境中總是能夠準(zhǔn)確估計(jì)姿態(tài)B.深度學(xué)習(xí)中的端到端姿態(tài)估計(jì)網(wǎng)絡(luò)不需要對(duì)物體的結(jié)構(gòu)和運(yùn)動(dòng)有先驗(yàn)了解C.姿態(tài)估計(jì)的結(jié)果不受相機(jī)參數(shù)和拍攝角度的影響D.結(jié)合多種傳感器數(shù)據(jù)和深度學(xué)習(xí)的方法可以提高姿態(tài)估計(jì)的精度和魯棒性二、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)使用立體視覺技術(shù),計(jì)算兩個(gè)相機(jī)拍攝的同一物體的深度信息。2、(本題5分)使用目標(biāo)跟蹤算法,跟蹤演唱會(huì)觀眾的情緒變化。3、(本題5分)基于深度學(xué)習(xí),實(shí)現(xiàn)對(duì)跳水比賽中運(yùn)動(dòng)員入水姿勢(shì)的檢測(cè)。4、(本題5分)通過計(jì)算機(jī)視覺,對(duì)不同類型的竹編作品進(jìn)行分類。5、(本題5分)設(shè)計(jì)一個(gè)程序,通過計(jì)算機(jī)視覺識(shí)別不同品
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年娛樂行業(yè)元宇宙應(yīng)用報(bào)告及未來五至十年娛樂模式報(bào)告
- 建筑施工消防安全檢查記錄表模板
- 濕電除塵系統(tǒng)設(shè)計(jì)與維護(hù)指南
- 高校畢業(yè)生就業(yè)指導(dǎo)教材及輔導(dǎo)方案
- 2026年遠(yuǎn)程辦公協(xié)作工具市場(chǎng)創(chuàng)新報(bào)告
- 2026年遠(yuǎn)程教育行業(yè)應(yīng)用報(bào)告
- 訴訟費(fèi)用復(fù)核申請(qǐng)書范文集
- 小學(xué)語(yǔ)文閱讀理解強(qiáng)化訓(xùn)練卷
- 心臟起搏器植入適應(yīng)證及操作指南
- 食堂開業(yè)典禮主持詞范本
- 化工廠班組安全培訓(xùn)課件
- 2025四川成都農(nóng)商銀行招聘10人筆試備考題庫(kù)及答案解析
- 營(yíng)業(yè)執(zhí)照借用協(xié)議合同
- 2025年秋蘇教版(新教材)初中生物八年級(jí)上冊(cè)期末知識(shí)點(diǎn)復(fù)習(xí)卷及答案(共三套)
- 2025年小升初學(xué)校家長(zhǎng)面試題庫(kù)及答案
- 2025年法考客觀題真題回憶版(含答案)
- WB/T 1019-2002菱鎂制品用輕燒氧化鎂
- GB/T 6003.2-1997金屬穿孔板試驗(yàn)篩
- GB/T 4074.21-2018繞組線試驗(yàn)方法第21部分:耐高頻脈沖電壓性能
- 完整word版毛澤東思想和中國(guó)特色社會(huì)主義理論體系概論知識(shí)點(diǎn)歸納
- GB/T 13350-2008絕熱用玻璃棉及其制品
評(píng)論
0/150
提交評(píng)論