2025年重慶市九龍坡區(qū)7年級數(shù)學下冊第五章生活中的軸對稱重點解析試題_第1頁
2025年重慶市九龍坡區(qū)7年級數(shù)學下冊第五章生活中的軸對稱重點解析試題_第2頁
2025年重慶市九龍坡區(qū)7年級數(shù)學下冊第五章生活中的軸對稱重點解析試題_第3頁
2025年重慶市九龍坡區(qū)7年級數(shù)學下冊第五章生活中的軸對稱重點解析試題_第4頁
2025年重慶市九龍坡區(qū)7年級數(shù)學下冊第五章生活中的軸對稱重點解析試題_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

重慶市九龍坡區(qū)7年級數(shù)學下冊第五章生活中的軸對稱重點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、在一些美術字中,有的漢字是軸對稱圖形.下面?zhèn)€漢字中,可以看作是軸對稱圖形的是()A. B. C. D.2、如圖1,有一張長、寬分別為12和8的長方形紙片,將它對折后再對折,得到圖2,然后沿圖2中的虛線剪開,得到兩部分,其中一部分展開后的平面圖形(圖3)可以是()A.①②③ B.①②④ C.①③④ D.②③④3、下面是四家醫(yī)院標志的圖案部分,其中是軸對稱圖形的是()A. B.C. D.4、在千家萬戶團圓的時刻,我市一批醫(yī)務工作者奔赴武漢與疫情抗爭,他們是“最美逆行者”.下列藝術字中,可以看作是軸對稱圖形的是()A. B. C. D.5、下列在線學習平臺的圖標中,是軸對稱圖形的是()A. B. C. D.6、自新冠肺炎疫情發(fā)生以來,莆田市積極普及科學防控知識,下面是科學防控知識的圖片,圖片上有圖案和文字說明,其中的圖案是軸對稱圖是()A.有癥狀早就醫(yī) B.打噴捂口鼻C.防控疫情我們在一起 D.勤洗手勤通風7、下列圖標中是軸對稱圖形的是()A. B. C. D.8、下列圖案是軸對稱圖形的是()A. B. C. D.9、如圖,在中,,,是上一點,將沿折疊,使點落在邊上的處,則等于()A. B. C. D.10、下列學習類APP的圖表中,可看作是軸對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,將△ABC折疊,使點B落在AC邊的中點D處,折痕為MN,若BC=3,AC=2,則△CDN的周長為___.2、如圖的三角形紙片中,AB=8,BC=6,AC=5,沿過點B的直線折疊這個三角形,使得點C落在AB邊上的點E處,折痕為BD,則△AED的周長=____.3、如圖,長方形紙片ABCD中AD∥BC,AB∥CD,∠A=90°,將紙片沿EF折疊,使頂點C、D分別落在點C'、D'處,C'E交AF于點G.若∠CEF=68°,則么∠GFD'=______°.4、如圖,若AD是的角平分線,則________________或________________.5、如圖,方格紙中的每個小方格的邊長為1,△ABC是格點三角形(即頂點恰好是小方格的頂點).若格點△ACP與△ABC全等(不與△ABC重合),則所有滿足條件的點P有_____個.6、若點M(3,a),N(a,b)關于x軸對稱,則a+b=_____.7、如圖,點D與點D'關于AE對稱,∠CED'=60°,則∠AED的度數(shù)為____.8、如圖,直線AD為ABC的對稱軸,BC=6,AD=4,則圖中陰影部分的面積為__________.9、在如圖所示的圖中補一個小正方形,使其成為軸對稱圖形,共有__________種補法.10、如圖所示,其中與甲成軸對稱的圖形是___________.三、解答題(6小題,每小題10分,共計60分)1、如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,點A、B、C在小正方形的頂點上.(1)在圖中畫出與△ABC關于直線l成軸對稱的△A1B1C1;(2)△A1B1C1的面積為______;(3)線段CC1被直線l______.2、如圖,在邊長為1的正方形網(wǎng)格中有一個ABC,完成下列各圖(用無刻度的直尺畫圖,保留作圖痕跡).(1)作ABC關于直線MN對稱的A1B1C1;(2)求ABC的面積;(3)在直線MN上找一點P,使得PA+PB最?。?、(閱讀與理解)折紙,常常能為證明一個命題提供思路和方法,例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>∠B呢?(分析)把AC沿∠A的角平分線AD翻折,因為AB>AC,所以點C落在AB上的點C’處,即AC=AC’,據(jù)以上操作,易證明△ACD≌△AC’D,所以∠AC’D=∠C,又因為∠AC’D>∠B,所以∠C>∠B.(感悟與應用)(1)如圖(1),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,試判斷AC和AD、BC之間的數(shù)量關系,并說明理由;(2)如圖(2),在四邊形ABCD中,AC平分∠DAB,CD=CB.求證:∠B+∠D=180°.4、如圖,從圖形Ⅰ到圖形Ⅱ是進行了平移還是軸對稱?如果是軸對稱,找出對稱軸;如果是平移,是怎樣的平移?5、如圖1,射線OP平分∠MON,在射線OM,ON上分別截取線段OA,OB,使OA=OB,在射線OP上任取一點D,連接AD,BD.易得:AD=BD.(1)如圖2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求證:BC=AC+AD;(2)如圖3,在四邊形ABDE中,AB=10,DE=2,BD=6,C為BD邊中點.若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.6、如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點三角形ABC(三角形的頂點都在網(wǎng)格格點上).(1)在圖中畫出△ABC關于直線l對稱的△A′B′C′(要求:點A與點A′、點B與點B′、點C與點C′相對應);(2)在(1)的結(jié)果下,設AB交直線l于點D,連接AB′,求四邊形AB′CD的面積.-參考答案-一、單選題1、A【分析】如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.利用軸對稱圖形的定義進行判斷即可.【詳解】解:A、是軸對稱圖形,故此選項符合題意;B、不是軸對稱圖形,故此選項不符合題意;C、不是軸對稱圖形,故此選項不符合題意;D、不是軸對稱圖形,故此選項不符合題意;故選:A【點睛】此題主要考查了軸對稱圖形的定義,關鍵是掌握如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.2、B【分析】由剪去的三角形與展開后的平面圖形中的三角形是全等三角形,觀察形成的圖案是否符合要求判斷即可.【詳解】解:圖3中,圖③不符合題意,圖③中的4個三角形與圖2中剪去的三角形不全等.故①②④符合題意,故選:B.【點睛】本題考查的是軸對稱的性質(zhì),全等三角形的性質(zhì),動手實踐是解此類題的關鍵.3、A【分析】根據(jù)軸對稱圖形的概念逐項判斷解答即可.【詳解】.是軸對稱圖形,選項正確;.不是軸對稱圖形,選項錯誤;.不是軸對稱圖形,選項錯誤;.不是軸對稱圖形,選項錯誤;故選:【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后能重合.4、B【分析】把一個圖形沿某一條直線對折,直線兩旁的部分能夠完全重合的圖形叫做軸對稱圖形,根據(jù)定義判斷即可.【詳解】解:A、不是軸對稱圖形.B、是軸對稱圖形.C、不是軸對稱圖形.D、不是軸對稱圖形.故選:B.【點睛】本題主要是考查了軸對稱圖形的定義,熟練掌握軸對稱圖形的定義是解題的關鍵.5、B【分析】根據(jù)軸對稱圖形定義進行分析即可.如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:選項A,C,D都不能找到這樣的一條直線,使這些圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形;選項B能找到這樣的一條直線,使這個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形.故選:B.【點睛】此題主要考查了軸對稱圖形,判斷軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.6、C【分析】根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形進行解答即可.【詳解】解:A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、是軸對稱圖形,故C符合題意;D、不是軸對稱圖形,故D不符合題意.故選C.【點睛】本題主要考查了軸對稱圖形,正確掌握軸對稱圖形的性質(zhì)是解題關鍵.7、B【詳解】解:選項A中的圖形不是軸對稱圖形,故A不符合題意;選項B中的圖形是軸對稱圖形,故B符合題意;選項C中的圖形不是軸對稱圖形,故C不符合題意;選項D中的圖形不是軸對稱圖形,故D不符合題意;故選B【點睛】本題考查的是軸對稱圖形的識別,軸對稱圖形的概念:把一個圖形沿某條直線對折,對折后直線兩旁的部分能夠完全重合;掌握“軸對稱圖形的概念”是解本題的關鍵.8、C【分析】根據(jù)軸對稱圖形的定義逐項識別即可,一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【詳解】解:選項A、B、D均不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形,選項C能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形,故選:C.【點睛】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關鍵.9、D【分析】先根據(jù)三角形內(nèi)角和定理求出∠B的度數(shù),再由圖形翻折變換的性質(zhì)得出∠CED的度數(shù),再由三角形外角的性質(zhì)即可得出結(jié)論.【詳解】解:在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°-25°=65°,∵△CDE由△CDB折疊而成,∴∠CED=∠B=65°,∵∠CED是△AED的外角,∴∠ADE=∠CED-∠A=65°-25°=40°.故選:D.【點睛】本題考查了三角形內(nèi)角和定理,翻折變換的性質(zhì),根據(jù)題意得出∠ADE=∠CED-∠A是解題關鍵.10、C【分析】根據(jù)軸對稱圖形的定義逐一進行判斷即可得答案.【詳解】A.不是軸對稱圖形,故該選項不符合題意,B.不是軸對稱圖形,故該選項不符合題意,C.是軸對稱圖形,故該選項符合題意,D.不是軸對稱圖形,故該選項不符合題意,故選:C.【點睛】本題考查的是軸對稱圖形,如果一個圖形沿著一條直線對折后兩部分完全重合,那么這樣的圖形就叫做軸對稱圖形;軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.二、填空題1、4【分析】由折疊可得NB=ND,由點D是AC的中點,可求出CD的長,將△CDN的周長轉(zhuǎn)化為CD+BC即可.【詳解】解:由折疊得,NB=ND,∵點D是AC的中點,∴CD=AD=AC=×2=1,∴△CDN的周長=CD+ND+NC=CD+NB+NC=CD+BC=1+3=4,故答案為:4.【點睛】本題考查了折疊的性質(zhì),將三角形的周長轉(zhuǎn)化為CD+BC是解決問題的關鍵.2、7【分析】根據(jù)折疊的性質(zhì),可得BE=BC=6,CD=DE,從而AE=AB-BE=2,再由△AED的周長=AD+DE+AE,即可求解.【詳解】解:∵沿過點B的直線折疊這個三角形,使得點C落在AB邊上的點E處,∴BE=BC=6,CD=DE,∵AB=8,∴AE=AB-BE=2,∴△AED的周長=AD+DE+AE=AD+CD+AE=AC+DE=5+2=7.故答案為:7【點睛】本題主要考查了折疊的性質(zhì),熟練掌握折疊前后對應線段相等,對應角相等是解題的關鍵.3、44【分析】根據(jù)平行線的性質(zhì)和翻折不變性解答.【詳解】解:∵ADBC,∴∠DFE=180°?∠CEF=180°?68°=112°,∴∠D′FE=112°,∠GFE=180°?112°=68°,∴∠GFD′=112°?68°=44°.故答案為:44.【點睛】本題考查了平行線的性質(zhì)和翻折不變性,注意觀察圖形.4、=∠BAD∠CAD【分析】根據(jù)角平分線的定義進行求解即可.【詳解】解:∵AD是的角平分線,∴,或,故答案為:=,∠BAC,∠BAD,∠CAD.【點睛】本題主要考查了角平分線的定義,解題的關鍵在于能夠熟記角平分線的定義.5、3【分析】如圖,把沿直線對折可得:把沿直線對折,從而可得答案.【詳解】解:如圖,把沿直線對折可得:把沿直線對折可得:所以符合條件的點有3個,故答案為:3【點睛】本題考查的軸對稱的性質(zhì),全等三角形的概念,掌握“利用軸對稱的性質(zhì)確定全等三角形”是解本題的關鍵.6、2【分析】根據(jù)題意直接利用關于x軸對稱點的性質(zhì),得出a,b的值即可.【詳解】解:∵點M和點N關于x軸對稱∴3=a,a-2+b=0∴a=3,b=-1∴a+b=2.故答案為:2.【點睛】本題主要考查關于x軸對稱點的性質(zhì),正確記憶橫縱坐標關系是解題的關鍵.7、60°【分析】由軸對稱的性質(zhì)可得,再根據(jù),求解即可.【詳解】解:由對稱的性質(zhì)可得,又∵,∴,故答案為.【點睛】此題考查了軸對稱的性質(zhì),以及鄰補角的性質(zhì),解題的關鍵是掌握軸對稱以及鄰補角的性質(zhì).8、6【分析】根據(jù)軸對稱的性質(zhì)判斷出陰影部分的面積的和等于三角形的面積的一半,AD⊥BC,然后根據(jù)三角形的面積列式計算即可得解.【詳解】解:∵AD所在的直線是△ABC的對稱軸,∴陰影部分的面積的和等于三角形的面積的一半,AD⊥BC,∴陰影部分的面積和=×(×6×4)=6.故答案為:6.【點睛】本題考查軸對稱的性質(zhì),對應點的連線與對稱軸的位置關系是互相垂直,對應點所連的線段被對稱軸垂直平分,對稱軸上的任何一點到兩個對應點之間的距離相等,對應的角、線段都相等.9、4【分析】直接利用軸對稱圖形的性質(zhì)得出符合題意的答案.【詳解】解:如圖所示:故答案為:4【點睛】本題考查的是利用軸對稱設計圖案,熟知軸對稱的性質(zhì)是解答此題的關鍵.10、丁【分析】根據(jù)軸對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,進行判斷即可.【詳解】解:觀察圖形可知與甲成軸對稱的圖形是丁,故答案為:?。军c睛】本題主要考查了軸對稱圖形的定義,解題的關鍵在于能夠熟練掌握軸對稱圖形的定義.三、解答題1、(1)見解析;(2)3;(3)垂直平分【分析】(1)分別作出B、C關于直線l的對稱點即可;(2)用一個矩形的面積分別減去三個直角三角形的面積去計算△A1B1C1的面積;(3)根據(jù)軸對稱的性質(zhì)矩形判斷.【詳解】解:(1)如圖,△A1B1C1為所作;(2)△A1B1C1的面積=2×4-×4×1-×1×2-×2×2=3;故答案為3;(3)∵C點與C1關于直線l對稱,∴線段CC1被直線l垂直平分.故答案為:垂直平分.【點睛】本題考查了作圖-軸對稱變換:幾何圖形都可看作是由點組成,我們在畫一個圖形的軸對稱圖形時,也是先從確定一些特殊的對稱點開始的.2、(1)作圖見解析;(2);(3)作圖見解析【分析】(1)分別作出三個頂點關于直線MN的對稱點,再首尾順次連接即可;(2)用長為2、寬為3的矩形面積減去四周三個直角三角形的面積即可得出答案;(3)連接AB1,與直線MN的交點即為所求.【詳解】解:(1)如圖所示,△A1B1C1即為所求.(2)S△ABC=2×3﹣2××1×2﹣×1×3=;(3)如圖所示,點P即為所求.【點睛】本題主要考查了利用軸對稱的性質(zhì)進行格點作圖,準確分析作圖是解題的關鍵.3、(1)AC+AD=BC;(2)證明見解答過程;【分析】(1)把AC沿∠ACB的角平分線CD翻折,點A落在BC上的點A′處,連接A′D,根據(jù)直角三角形的性質(zhì)求出∠A,根據(jù)三角形的外角性質(zhì)得到∠A′DB=∠B,根據(jù)等腰三角形的判定定理得到A′D=A′B,結(jié)合圖形計算,證明結(jié)論;(2)將AD沿AC翻折,使D落在AB上的D′處,連接CD′,根據(jù)全等三角形的性質(zhì)得到CD=CD′=BC,∠D=∠AD′C,進而證明結(jié)論;【詳解】(1)解:AC+AD=BC,理由如下:如圖,把AC沿∠ACB的角平分線CD翻折,點A落在BC上的點A′處,連接A′D,∵∠ACB=90°,∠B=30°,∴∠A=90°-∠B=60°,由折疊的性質(zhì)可知,CA′=CA,A′D=AD,∠CA′D=∠A=60°,∵∠B=30°,∴∠A′DB=∠CA′D-∠B=30°,∴∠A′DB=∠B,∴A′D=A′B,∴AD=A′B,∴BC=CA′+A′B=AC+AD;(2)證明:如圖,將AD沿AC翻折,使D落在AB上的D′處,連接CD′,則△ADC≌△AD′C,∴CD=CD′=BC,∠D=∠AD′C,∴∠B=∠BD′C,∵∠BD′C+∠AD′C=180°,∴∠B+∠D=180°.【點睛】本題考查的是翻折變換的性質(zhì)、等腰三角形的性質(zhì),掌握翻折變換的性質(zhì)是解題的關鍵.4、(1)圖形Ⅰ和圖形Ⅱ關于y軸對稱;(2)將圖形Ⅰ先向左平移5個單位長度,再向下平移3個單位長度,得到圖形Ⅱ;(3)將圖形Ⅰ先向右平移5個單位長度,再向下平移3個單位長度,得到圖形Ⅱ;(4)圖形Ⅰ和圖形Ⅱ關于x軸對稱.【分析】根據(jù)軸對稱的性質(zhì)與平移的性質(zhì)對各圖形分析判斷進行解答即可.【詳解】解:(1)中從圖形Ⅰ到圖形Ⅱ是進行了軸對稱變換,對稱軸是y軸;(2)中從圖形Ⅰ到圖形Ⅱ是進行了平移變換,先向左平移5個單位長度,再向下平移3個單位長度;(3)中從圖形Ⅰ到圖形Ⅱ是進行了平移變換,先向右平移5個單位長度,再向下平移3個單位長度;(4)中從圖形Ⅰ到圖形Ⅱ是進行了軸對稱變換,對稱軸是x軸.【點睛】本題考查了軸對稱的性質(zhì),平移的性質(zhì),熟練掌握性質(zhì)并準確識圖是解題的關鍵.5、(1)見解析;(2)15.【分析】(1)證△ECD≌△ACD(SAS),得EC=AC,DE=AD,∠CED=∠A=60°,再證BE=DE,則BE=AD,即可得出結(jié)論;(2)在AE上取點F,使AF=AB,連接CF,在AE上取點G,使EG=ED,連接CG,證△ACB≌△ACF(SAS),得CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可證△CGE≌△CDE(SAS),得CG=CD=3,GE=DE=2,∠DCE=∠GCE,再證△CFG是等邊三角形,得FG=CG=3,即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論