版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
京改版數(shù)學(xué)9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、記某商品銷售單價為x元,商家銷售此種商品每月獲得的銷售利潤為y元,且y是關(guān)于x的二次函數(shù).已知當(dāng)商家將此種商品銷售單價分別定為55元或75元時,他每月均可獲得銷售利潤1800元;當(dāng)商家將此種商品銷售單價定為80元時,他每月可獲得銷售利潤1550元,則y與x的函數(shù)關(guān)系式是(
)A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+20002、如圖,點O是△ABC的內(nèi)心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°3、若函數(shù)y=(a﹣1)x2+2x+a2﹣1是二次函數(shù),則()A.a(chǎn)≠1 B.a(chǎn)≠﹣1 C.a(chǎn)=1 D.a(chǎn)=±14、已知(a≠0,b≠0),下列變形正確的是()A. B. C.2a=3b D.3a=2b5、一個四邊形的各邊之比為1∶2∶3∶4,和它相似的另一個四邊形的最小邊長為,則它的最大邊長為(
)A. B. C. D.6、將拋物線C1:y=(x-3)2+2向左平移3個單位長度,得到拋物線C2,拋物線C2與拋物線C3關(guān)于x軸對稱,則拋物線C3的解析式為().A.y=x2-2 B.y=-x2+2 C.y=x2+2 D.y=-x2-2二、多選題(7小題,每小題2分,共計14分)1、如圖,AB為⊙O直徑,弦CD⊥AB于E,則下面結(jié)論中正確的是(
)A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE2、如圖,在⊙O中,AB是⊙O的直徑,點D是⊙O上一點,點C是弧AD的中點,弦CE⊥AB于點F,過點D的切線交EC的延長線于點G,連接AD,分別交CF、BC于點P、Q,連接AC.則下列結(jié)論中正確的是()A.∠BAD=∠ABC B.GP=GD C.點P是△ACQ的外心 D.AP?AD=CQ?CB3、如圖,在△EFG中,∠EFG=90°,F(xiàn)H⊥EG,下面等式中正確的是(
)A. B.C. D.4、下列四組圖形中,是相似圖形的是(
)A. B.C. D.5、如圖,在△ABC中,點D在邊AC上,下列條件中,不能判斷△BDC與△ABC相似的是(
)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA6、如圖,正方形ABCD,點E在邊AB上,且AE:EB=2:3,過點A作DE的垂線,垂足為I,交BC于點F,交BD于點H,延長DC至G,使CG=DC,連接GI,EH.下列結(jié)論正確的是(
)A. B. C. D.7、下列四個命題中正確的是(
)A.與圓有公共點的直線是該圓的切線B.垂直于圓的半徑的直線是該圓的切線C.到圓心的距離等于半徑的直線是該圓的切線D.過圓直徑的端點,垂直于此直徑的直線是該圓的切線第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,在RT△ABC中,,,點在上,且,點是線段上一個動點,以為直徑作⊙,點為直徑上方半圓的中點,連接,則的最小值為___.2、北侖梅山所產(chǎn)的草莓柔嫩多汁,芳香味美,深受消費者喜愛.有一草莓種植大戶,每天草莓的采摘量為300千克,當(dāng)草莓的零售價為22元/千克時,剛好可以全部售完.經(jīng)調(diào)查發(fā)現(xiàn),零售價每上漲1元,每天的銷量就減少30千克,而剩余的草莓可由批發(fā)商以18元/千克的價格統(tǒng)一收購走,則當(dāng)草莓零售價為___元時,該種植戶一天的銷售收入最大.3、如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度為10米),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為x米,面積為S平方米.則S與x的函數(shù)關(guān)系式是____________,自變量x的取值范圍是____________.4、如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像分別交、軸于點、,將直線繞點按順時針方向旋轉(zhuǎn),交軸于點,則直線的函數(shù)表達(dá)式是__________.5、拋物線是二次函數(shù),則m=___.6、舉出一個生活中應(yīng)用反比例函數(shù)的例子:______.7、已知二次函數(shù)y=x2+bx+c的頂點在x軸上,點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)圖象上,求n的值為____.四、解答題(6小題,每小題10分,共計60分)1、某校九年級數(shù)學(xué)興趣小組的活動課題是“測量物體高度”.小組成員小明與小紅分別采用不同的方案測量同一個底面為圓形的古塔高度,以下是他們研究報告的部分記錄內(nèi)容:課題:測量古塔的高度小明的研究報告小紅的研究報告圖示測量方案與測量數(shù)據(jù)用距離地面高度為1.6m的測角器測出古塔頂端的仰角為35°,再用皮尺測得測角器所在位置與古塔底部邊緣的最短距離為30m.在點A用距離地面高度為1.6m的測角器測出古塔頂端的仰角為17°,然后沿AD方向走58.8m到達(dá)點B,測出古塔頂端的仰角為45°.參考數(shù)據(jù)sin35°≈0.57,cos35°≈0.82,tan35°≈0.70sin17°≈0.29,cos17°≈0.96,tan17°≈0.30,計算古塔高度(結(jié)果精確到0.1m)30×tan35°+1.6≈22.6(m)(1)寫出小紅研究報告中“計算古塔高度”的解答過程;(2)數(shù)學(xué)老師說小紅的結(jié)果比較準(zhǔn)確,而小明的結(jié)果與古塔的實際高度偏差較大.請你針對小明的測量方案分析測量發(fā)生偏差的原因.2、如圖,已知拋物線的頂點坐標(biāo)為M,與x軸相交于A,B兩點(點B在點A的右側(cè)),與y軸相交于點C.(1)用配方法將拋物線的解析式化為頂點式:(),并指出頂點M的坐標(biāo);(2)在拋物線的對稱軸上找點R,使得CR+AR的值最小,并求出其最小值和點R的坐標(biāo);(3)以AB為直徑作⊙N交拋物線于點P(點P在對稱軸的左側(cè)),求證:直線MP是⊙N的切線.3、某校一棵大樹發(fā)生一定的傾斜,該樹與地面的夾角.小明測得某時大樹的影子頂端在地面處,此時光線與地面的夾角;又過了一段時間,測得大樹的影子頂端在地面處,此時光線與地面的夾角,若米,求該樹傾斜前的高度(即的長度).(結(jié)果保留一位小數(shù),參考數(shù)據(jù):,,,).4、(1)解方程:(2)計算:5、某廠家生產(chǎn)一批遮陽傘,每個遮陽傘的成本價是20元,試銷售時發(fā)現(xiàn):遮陽傘每天的銷售量y(個)與銷售單價x(元)之間是一次函數(shù)關(guān)系,當(dāng)銷售單價為28元時,每天的銷售量為260個;當(dāng)銷售單價為30元時,每天的銷售量為240個.(1)求遮陽傘每天的銷出量y(個)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)設(shè)遮陽傘每天的銷售利潤為w(元),當(dāng)銷售單價定為多少元時,才能使每天的銷售利潤最大?最大利潤是多少元?6、已知==,求的值.-參考答案-一、單選題1、D【解析】【分析】設(shè)二次函數(shù)的解析式為:y=ax2+bx+c,根據(jù)題意列方程組即可得到結(jié)論.【詳解】解:設(shè)二次函數(shù)的解析式為:y=ax2+bx+c,∵當(dāng)x=55,y=1800,當(dāng)x=75,y=1800,當(dāng)x=80時,y=1550,∴,解得a=?2,b=260,c=?6450,∴y與x的函數(shù)關(guān)系式是y=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000,故選:D.【考點】本題考查了根據(jù)實際問題列二次函數(shù)關(guān)系式,正確的列方程組是解題的關(guān)鍵.2、B【解析】【分析】利用內(nèi)心的性質(zhì)得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和計算出∠OBC+∠OCB=55°,然后再利用三角形內(nèi)角和計算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內(nèi)心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點】此題主要考查了三角形內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點的連線平分這個內(nèi)角.3、A【解析】【分析】利用二次函數(shù)定義進(jìn)行解答即可.【詳解】解:由題意得:a﹣1≠0,解得:a≠1,故選:A.【考點】本題主要考查了二次函數(shù)的定義,準(zhǔn)確計算是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)比例的性質(zhì)“兩內(nèi)項之積等于兩外項之積”對各選項分析判斷即可得.【詳解】解:A、∵,∴,∴,選項說法錯誤,不符合題意;B、∵,∴,∴,選項說法錯誤,不符合題意;C、∵,∴,選項說法正確,符合題意;D、∵,∴,選項說法錯誤,不符合題意;故選C.【考點】本題考查了比例的性質(zhì),解題的關(guān)鍵是熟記比例的性質(zhì).5、C【解析】【分析】設(shè)它的最大邊長為,根據(jù)相似圖形的性質(zhì)求解即可得到答案【詳解】解:設(shè)它的最大邊長為,∵兩個四邊形相似,∴,解得,即該四邊形的最大邊長為.故選C.【考點】本題考查了相似多邊形的性質(zhì),牢記“相似多邊形對應(yīng)邊的比相等”是解題的關(guān)鍵.6、D【解析】【分析】根據(jù)拋物線C1的解析式得到頂點坐標(biāo),利用二次函數(shù)平移的規(guī)律:左加右減,上加下減,并根據(jù)平移前后二次項的系數(shù)不變可得拋物線C2的頂點坐標(biāo),再根據(jù)關(guān)于x軸對稱的兩條拋物線的頂點橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)可得到拋物線C3所對應(yīng)的解析式.【詳解】解:∵拋物線C1:y=(x-3)2+2,其頂點坐標(biāo)為(3,2)∵向左平移3個單位長度,得到拋物線C2∴拋物線C2的頂點坐標(biāo)為(0,2)∵拋物線C2與拋物線C3關(guān)于x軸對稱∴拋物線C3的橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)∴拋物線C3的頂點坐標(biāo)為(0,-2),二次項系數(shù)為-1∴拋物線C3的解析式為y=-x2-2故選:D.【考點】本題主要考查了二次函數(shù)圖象的平移、對稱問題,熟練掌握平移的規(guī)律以及關(guān)于x軸對稱的兩條拋物線的頂點的橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)是解題的關(guān)鍵.二、多選題1、ABC【解析】【分析】根據(jù)垂徑定理知,垂直于弦的直徑平分弦,并且平分線所對的兩條弧,即可判斷A選項、B選項正確,由圓周角定理知,在同圓或等圓中,同弧所對的圓周角相等,可判斷C選項正確,題目中并沒有提到E是OB中點,所以不能證明OE=BE.【詳解】A.AB為⊙O直徑,弦CD⊥AB于E,由垂徑定理得:CE=DE,A選項正確;B.由垂徑定理得:,B選項正確;C.,由圓周角定理得:∠BAC=∠BAD,C選項正確;D.E不一定是OB中點,所以不能證明OE=BE,D錯誤.故選:ABC.【考點】本題考查垂徑定理和圓周角定理,熟知垂直于弦的直徑平分弦,并且平分線所對的兩條弧是解題的關(guān)鍵.2、BCD【解析】【分析】A錯誤,假設(shè)成立,推出矛盾即可;B正確.想辦法證明即可;C正確.想辦法證明即可;D正確.證明,可得,證明,可得,證明,可得,由此即可解決問題;【詳解】解:A錯誤,假設(shè),則,,,顯然不可能,故A錯誤.B正確.連接.是切線,,,,,,,,,故B正確.C正確.,,,,,,是直徑,,,,,,,點是的外心.故C正確.D正確.連接.,,,,,,,,可得,,,,可得,.故D正確,故選:BCD.【考點】本題考查相似三角形的判定和性質(zhì)、垂徑定理、圓周角定理、切線的性質(zhì)等知識,解題的關(guān)鍵是正確現(xiàn)在在相似三角形解決問題,屬于中考選擇題中的壓軸題.3、ABD【解析】【分析】先根據(jù)同角的余角相等得出∠G=∠EFH,再根據(jù)三角函數(shù)的定義求解即可.【詳解】解:∵在△EFG中,∠EFG=90°,F(xiàn)H⊥EG,∴∠E+∠G=90°,∠E+∠EFH=90°,∴∠EFH=∠G,∴sinG=sin∠EFH=.所以選項A、B、D都是正確的,故選:ABD.【考點】本題利用了同角的余角相等和銳角三角函數(shù)的定義解答,屬較簡單題目.4、ABC【解析】【分析】根據(jù)相似圖形的定義,對選項進(jìn)行一一分析,排除錯誤答案.【詳解】解:A、形狀相同,但大小不同,符合相似形的定義,故符合題意;B、形狀相同,但大小不同,符合相似形的定義,故符合題意;C、形狀相同,但大小不同,符合相似形的定義,故符合題意;D、形狀不相同,不符合相似形的定義,故不符合題意;故選:ABC.【考點】本題考查的是相似形的定義,結(jié)合圖形,即圖形的形狀相同,但大小不一定相同的變換是相似變換.5、ABD【解析】【分析】根據(jù)三角形相似的判斷方法逐個判斷即可.【詳解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合題意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合題意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故選項不符合題意;D、BD2=CD·DA,不能判定△BDC與△ABC,符合題意;故選:ABD.【考點】此題考查了三角形相似的判定方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.6、ABD【解析】【分析】證明△BAF≌△ADE,可判斷選項A和選項B,設(shè)AE=2a,則EB=3a,正方形ABCD的邊長為5a,求得BH=a,DH=a,利用反證法判斷選項C;利用相似三角形的性質(zhì)以及三角函數(shù)求得IG=a,即可判斷選項D.【詳解】解:∵AE:EB=2:3,∴設(shè)AE=2a,則EB=3a,正方形ABCD的邊長為5a,∵四邊形ABCD是正方形,AI⊥DE,∴AD=AB,∠DAB=∠ABF=∠AID=90°,∴∠BAF=90°-∠DAI=∠ADE,∴△BAF≌△ADE,∴BF=AE,故選項A正確;∴S△BAF=S△ADE,∴S△BAF-S△AEI=S△ADE-S△AEI,即S△ADI=S四邊形BFIE,故選項B正確;∵四邊形ABCD是正方形,邊長為5a,∴BD=5a,BF∥AD,∴,∴BH=a,DH=a,假設(shè)EH⊥BD,則△BHE是等腰直角三角形,則BE=BH=3a,∴假設(shè)EH⊥BD不成立,故選項C錯誤;過點I作IM⊥AD于點M,過點I作IN⊥DC于點N,∵四邊形ABCD是正方形,∴∠ADC=90°,∴四邊形IMDN是矩形,∵DE=a,AE×AD=DE×AI,∴AI=a,∴DI==a,∵sin∠ADI=,cos∠ADI=,∴IM=a,DM=a,∵CG=DC,∴DG=a,∴NG=a,IN=DM=a,∴IG=a,∴IG=DG.故選項D正確;故選:ABD.【考點】本題考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,7、CD【解析】【分析】要正確理解切線的定義:和圓有唯一公共點的直線是圓的切線.掌握切線的判定:①經(jīng)過半徑的外端,且垂直于這條半徑的直線,是圓的切線;②到圓心的距離等于半徑的直線是該圓的切線.【詳解】解:A中,與圓有兩個公共點的直線,是圓的割線,故該選項不符合題意;B中,應(yīng)經(jīng)過此半徑的外端,故該選項不符合題意;C中,根據(jù)切線的判定方法,故該選項符合題意;D中,根據(jù)切線的判定方法,故該選項符合題意.故選:CD.【考點】本題考查了切線的判定.注意掌握切線的判定定理與切線的定義是解此題的關(guān)鍵.三、填空題1、【解析】【分析】如圖,連接OQ,CQ,過點A作AT⊥CQ交CQ的延長線于T.證明∠ACT=45°,求出AT即可解決問題.【詳解】解:如圖,連接OQ,CQ,過點A作AT⊥CQ交CQ的延長線于T.∵,∴OQ⊥PD,∴∠QOD=90°,∴∠QCD=∠QOD=45°,∵∠ACB=90°,∴∠ACT=45°,∵AT⊥CT,∴∠ATC=90°,∵AC=8,∴AT=AC?sin45°=4,∵AQ≥AT,∴AQ≥4,∴AQ的最小值為4,故答案為:4.【考點】本題考查圓周角定理,垂線段最短,解直角三角形等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.2、25【解析】【分析】設(shè)草莓的零售價為x元/千克,銷售收入為y元,由題意得y=30x2+1500x11880,再根據(jù)二次函數(shù)的性質(zhì)解答即可.【詳解】解:設(shè)草莓的零售價為x元/千克,銷售收入為y元,由題意得,y=x[30030(x22)]+18×30(x22)=30x2+1500x11880,當(dāng)時,y最大,∴當(dāng)草莓的零售價為25元/千克時,種植戶一天的銷售收入最大.故答案為:25.【考點】本題考查二次函數(shù)的實際應(yīng)用,熟練掌握二次函數(shù)的性質(zhì)是解題關(guān)鍵.3、
S=-3x2+24x
≤x<8【解析】【詳解】可先用籬笆的長表示出BC的長,然后根據(jù)矩形的面積=長×寬,得出S與x的函數(shù)關(guān)系式,并根據(jù)墻的最大可用長度為10米,列不等式組即可得出自變量的取值范圍.解:由題可知,花圃的寬AB為x米,則BC為(24?3x)米.∴S=x(24?3x)=?3x2+24x.∵0<24?3x≤10,解得≤x<8,故答案為S=-3x2+24x,≤x<8.4、【解析】【分析】先根據(jù)一次函數(shù)求得、坐標(biāo),再過作的垂線,構(gòu)造直角三角形,根據(jù)勾股定理和正余弦公式求得的長度,得到點坐標(biāo),從而得到直線的函數(shù)表達(dá)式.【詳解】因為一次函數(shù)的圖像分別交、軸于點、,則,,則.過作于點,因為,所以由勾股定理得,設(shè),則,根據(jù)等面積可得:,即,解得.則,即,所以直線的函數(shù)表達(dá)式是.【考點】本題綜合考察了一次函數(shù)的求解、勾股定理、正余弦公式,以及根據(jù)一次函數(shù)的解求一次函數(shù)的表達(dá)式,要學(xué)會通過作輔助線得到特殊三角形,以便求解.5、3【解析】【分析】根據(jù)二次函數(shù)的定義:一般地,形如(a、b、c是常數(shù)且a≠0)的函數(shù)叫做二次函數(shù),進(jìn)行求解即可.【詳解】解:∵拋物線是二次函數(shù),∴,∴,故答案為:3.【考點】本題主要考查了二次函數(shù)的定義,解題的關(guān)鍵在于能夠熟知二次函數(shù)的定義.6、路程s一定,速度v與時間t之間的關(guān)系(答案不唯一).【解析】【分析】利用反比例函數(shù)的定義并結(jié)合生活中的實例來解答此題即可【詳解】根據(jù)路程=速度時間,速度v則可以用反比例函數(shù)來表示.故答案可以為路程s一定,速度v與時間t之間的關(guān)系(答案不唯一).【考點】本題主要考查了反比例函數(shù)的定義形式如(k為常數(shù),)的函數(shù)稱為反比例函數(shù).其中x是自變量,y是函數(shù),自變量x的取值范圍是不等于0的一切實數(shù).7、4【解析】【分析】由A、B坐標(biāo)可得對稱軸,由頂點在x軸上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐標(biāo)代入即可求得n的值.【詳解】解:∵點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)y=x2+bx+c圖象上,∴,∴b=﹣2(m+1),∵二次函數(shù)y=x2+bx+c的頂點在x軸上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐標(biāo)代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案為:4.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)的頂點坐標(biāo),表示出b、c的值是解題的關(guān)鍵.四、解答題1、(1)見解析,古塔的高度為26.8m;(2)小明測量的只是測角器所在位置與古塔底部邊緣的最短距離,應(yīng)該測量測角器所在位置與底面圓心的最短距離【解析】【分析】(1)設(shè),根據(jù)等腰直角三角形的性質(zhì)可得,然后利用正切函數(shù)得出,求解,結(jié)合圖形求解即可得出;(2)對比小紅的測量方法,結(jié)合題意:用皮尺測得測角器所在位置與古塔底部邊緣的最短距離即可得出誤差較大的原因.【詳解】解:(1)設(shè),在中,∵,∴,在中,∴,∴,∴,即m,∴m,答:古塔的高度為26.8m.(2)原因:小明測量的只是測角器所在位置與古塔底部邊緣的最短距離,應(yīng)該測量測角器所在位置與底面圓心的最短距離.【考點】題目主要考查利用正切函數(shù)解三角形的應(yīng)用,理解題意,依據(jù)正切函數(shù)列出方程是解題關(guān)鍵.2、(1),M(,);(2),(,);(3)證明見試題解析.【解析】【詳解】試題分析:(1)利用配方法把一般式轉(zhuǎn)化為頂點式,然后根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點坐標(biāo);(2)連接BC,則BC與對稱軸的交點為R,此時CR+AR的值最??;先求出點A、B、C的坐標(biāo),再利用待定系數(shù)法求出直線BC的解析式,進(jìn)而求出其最小值和點R的坐標(biāo);(3)設(shè)點P坐標(biāo)為(x,).根據(jù)NPAB=,列出方程,解方程得到點P坐標(biāo),再計算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.試題解析:(1)∵=,∴拋物線的解析式化為頂點式為:,頂點M的坐標(biāo)是(,);(2)∵,∴當(dāng)y=0時,,解得x=1或6,∴A(1,0),B(6,0),∵x=0時,y=﹣3,∴C(0,﹣3).連接BC,則BC與對稱軸x=的交點為R,連接AR,則CR+AR=CR+BR=BC,根據(jù)兩點之間線段最短可知此時CR+AR的值最小,最小值為BC==.設(shè)直線BC的解析式為,∵B(6,0),C(0,﹣3),∴,解得:,∴直線BC的解析式為:,令x=,得y==,∴R點坐標(biāo)為(,);(3)設(shè)點P坐標(biāo)為(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB為直徑的⊙N的半徑為AB=,∴NP=,即,移項得,,得:,整理得:,解得(與A重合,舍去),,(在對稱軸的右側(cè),舍去),(與B重合,舍去),∴點P坐標(biāo)為(2,2).∵M(jìn)(,),N(,0),∴==,==,==,∴,∴∠MPN=90°,∵點P在⊙N上,∴直線MP是⊙N的切線.考點:1.二次函數(shù)綜合題;2.最值問題;3.切線的判定;4.壓軸題.3、該樹傾斜前高度約為11.3米.【解析】【分析】過A作AH⊥BC于E,解直角三角形即可得到結(jié)論.【詳解】過作于,∵,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流管理崗位的面試題及答案參考
- 2026江蘇泰州市興化市部分高中學(xué)校校園招聘教師18人筆試考試備考題庫及答案解析
- 云南省玉溪市江川區(qū)衛(wèi)生健康系統(tǒng)招聘2026年畢業(yè)生29人考試筆試參考題庫附答案解析
- 2025湖南邵陽市綏寧縣政務(wù)服務(wù)中心招聘見習(xí)大學(xué)生崗位工作人員1人筆試考試備考題庫及答案解析
- 測試組長團(tuán)隊管理技巧含答案
- 2025年中職材料工程技術(shù)(材料制備實操)試題及答案
- 2025年中職植物保護(hù)(雜草防除技術(shù))試題及答案
- 2025年高職(環(huán)境工程技術(shù))水質(zhì)監(jiān)測基礎(chǔ)試題及答案
- 2025年大學(xué)大一(水利水電工程)水力學(xué)階段測試試題及答案
- 2025年大學(xué)藥物制劑(生物藥劑學(xué)與藥物動力學(xué))試題及答案
- 基建工程索賠管理人員索賠證據(jù)收集與審核指南
- AI智能生產(chǎn)平臺-AI+質(zhì)量管理
- 農(nóng)村山塘維修合同
- 量子點材料的發(fā)光性能研究與應(yīng)用
- 2025廣東廣州市衛(wèi)生健康委員會直屬事業(yè)單位廣州市紅十字會醫(yī)院招聘47人(第一次)筆試考試參考題庫及答案解析
- 中國外運(yùn)招聘筆試題庫2025
- 建筑物拆除施工溝通協(xié)調(diào)方案
- 2025食品行業(yè)專利布局分析及技術(shù)壁壘構(gòu)建與創(chuàng)新保護(hù)策略報告
- 2025四川省教育考試院招聘編外聘用人員15人考試筆試模擬試題及答案解析
- 特許經(jīng)營教學(xué)設(shè)計教案
- 2025年智能消防安全系統(tǒng)開發(fā)可行性研究報告
評論
0/150
提交評論