版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省張家界五道水鎮(zhèn)中學(xué)2026屆中考數(shù)學(xué)五模試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個數(shù)是()A.2 B.3 C.4 D.52.如圖,半⊙O的半徑為2,點P是⊙O直徑AB延長線上的一點,PT切⊙O于點T,M是OP的中點,射線TM與半⊙O交于點C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.3.如圖,在中,邊上的高是()A. B. C. D.4.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,2)且與x軸交點的橫坐標(biāo)分別為x1,x2,其中﹣1<x1<0,1<x2<2,下列結(jié)論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結(jié)論正確的有()A.1個 B.2個 C.3個 D.4個5.的值等于()A. B. C. D.6.如圖,是由幾個相同的小正方形搭成幾何體的左視圖,這幾個幾何體的擺搭方式可能是()A. B. C. D.7.下列實數(shù)0,,,π,其中,無理數(shù)共有()A.1個 B.2個 C.3個 D.4個8.如圖,在正方形ABCD中,AB=9,點E在CD邊上,且DE=2CE,點P是對角線AC上的一個動點,則PE+PD的最小值是()A. B. C.9 D.9.在平面直角坐標(biāo)系中,已知點A(﹣4,2),B(﹣6,﹣4),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應(yīng)點A′的坐標(biāo)是()A.(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)10.下列說法中,正確的是()A.長度相等的弧是等弧B.平分弦的直徑垂直于弦,并且平分弦所對的兩條弧C.經(jīng)過半徑并且垂直于這條半徑的直線是圓的切線D.在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,∠C=90°,AC=8,BC=6,點D是AB的中點,點E在邊AC上,將△ADE沿DE翻折,使點A落在點A′處,當(dāng)A′E⊥AC時,A′B=____.12.將多項式因式分解的結(jié)果是.13.如圖(1),將一個正六邊形各邊延長,構(gòu)成一個正六角星形AFBDCE,它的面積為1;取△ABC和△DEF各邊中點,連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和△D1E1F1各邊中點,連接成正六角星形A2F2B2D2C2E2,如圖(3)中陰影部分;如此下去…,則正六角星形A4F4B4D4C4E4的面積為_________________.14.⊙M的圓心在一次函數(shù)y=x+2圖象上,半徑為1.當(dāng)⊙M與y軸相切時,點M的坐標(biāo)為_____.15.分解因式:a3-a=16.如圖,直線y=2x+4與x,y軸分別交于A,B兩點,以O(shè)B為邊在y軸右側(cè)作等邊三角形OBC,將點C向左平移,使其對應(yīng)點C′恰好落在直線AB上,則點C′的坐標(biāo)為.三、解答題(共8題,共72分)17.(8分)將一個等邊三角形紙片AOB放置在平面直角坐標(biāo)系中,點O(0,0),點B(6,0).點C、D分別在OB、AB邊上,DC∥OA,CB=2.(I)如圖①,將△DCB沿射線CB方向平移,得到△D′C′B′.當(dāng)點C平移到OB的中點時,求點D′的坐標(biāo);(II)如圖②,若邊D′C′與AB的交點為M,邊D′B′與∠ABB′的角平分線交于點N,當(dāng)BB′多大時,四邊形MBND′為菱形?并說明理由.(III)若將△DCB繞點B順時針旋轉(zhuǎn),得到△D′C′B,連接AD′,邊D′C′的中點為P,連接AP,當(dāng)AP最大時,求點P的坐標(biāo)及AD′的值.(直接寫出結(jié)果即可).18.(8分)某汽車銷售公司6月份銷售某廠家的汽車,在一定范圍內(nèi),每部汽車的進價與銷售有如下關(guān)系,若當(dāng)月僅售出1部汽車,則該部汽車的進價為27萬元,每多售一部,所有出售的汽車的進價均降低0.1萬元/部.月底廠家根據(jù)銷售量一次性返利給銷售公司,銷售量在10部以內(nèi),含10部,每部返利0.5萬元,銷售量在10部以上,每部返利1萬元.①若該公司當(dāng)月賣出3部汽車,則每部汽車的進價為萬元;②如果汽車的銷售價位28萬元/部,該公司計劃當(dāng)月盈利12萬元,那么要賣出多少部汽車?(盈利=銷售利潤+返利)19.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經(jīng)過點E,且交BC于點F.(1)求證:AC是⊙O的切線;(2)若BF=6,⊙O的半徑為5,求CE的長.20.(8分)為紀(jì)念紅軍長征勝利81周年,我市某中學(xué)團委擬組織學(xué)生開展唱紅歌比賽活動,為此,該校隨即抽取部分學(xué)生就“你是否喜歡紅歌”進行問卷調(diào)查,并將調(diào)查結(jié)果統(tǒng)計后繪制成如下統(tǒng)計表和扇形統(tǒng)計圖.態(tài)度非常喜歡喜歡一般不知道頻數(shù)90b3010頻率a0.350.20請你根據(jù)統(tǒng)計圖、表,提供的信息解答下列問題:(1)該校這次隨即抽取了名學(xué)生參加問卷調(diào)查:(2)確定統(tǒng)計表中a、b的值:a=,b=;(3)該校共有2000名學(xué)生,估計全校態(tài)度為“非常喜歡”的學(xué)生人數(shù).21.(8分)如圖,四邊形ABCD中,E點在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求證:△ABC與△DEC全等.22.(10分)臺州市某水產(chǎn)養(yǎng)殖戶進行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數(shù)關(guān)系為:p=t+16,日銷售量y(千克)與時間第t(天)之間的函數(shù)關(guān)系如圖所示:(1)求日銷售量y與時間t的函數(shù)關(guān)系式?(2)哪一天的日銷售利潤最大?最大利潤是多少?(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2400元?23.(12分)x取哪些整數(shù)值時,不等式5x+2>3(x-1)與x≤2-x都成立?24.已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側(cè)的兩點,AC=DC,過點C與⊙O相切的直線CF交弦DB的延長線于點E.(1)試判斷直線DE與CF的位置關(guān)系,并說明理由;(2)若∠A=30°,AB=4,求的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
①先根據(jù)角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質(zhì)和等腰三角形的性質(zhì)得:∠ACE=30°,最后由平行線的性質(zhì)可作判斷;②先根據(jù)三角形中位線定理得:OE=AB=,OE∥AB,根據(jù)勾股定理計算OC=和OD的長,可得BD的長;③因為∠BAC=90°,根據(jù)平行四邊形的面積公式可作判斷;④根據(jù)三角形中位線定理可作判斷;⑤根據(jù)同高三角形面積的比等于對應(yīng)底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結(jié)論.【詳解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四邊形ABCD是平行四邊形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等邊三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正確;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四邊形ABCD是平行四邊形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正確;③由②知:∠BAC=90°,∴S?ABCD=AB?AC,故③正確;④由②知:OE是△ABC的中位線,又AB=BC,BC=AD,∴OE=AB=AD,故④正確;⑤∵四邊形ABCD是平行四邊形,∴OA=OC=,∴S△AOE=S△EOC=OE?OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正確;本題正確的有:①②③④⑤,5個,故選D.【點睛】本題考查了平行四邊形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形30度角的性質(zhì)、三角形面積和平行四邊形面積的計算;熟練掌握平行四邊形的性質(zhì),證明△ABE是等邊三角形是解決問題的關(guān)鍵,并熟練掌握同高三角形面積的關(guān)系.2、A【解析】
連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結(jié)論.【詳解】連接OT、OC,∵PT切⊙O于點T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中點,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了等腰三角形的判定與性質(zhì)和含30度的直角三角形三邊的關(guān)系.3、D【解析】
根據(jù)三角形的高線的定義解答.【詳解】根據(jù)高的定義,AF為△ABC中BC邊上的高.故選D.【點睛】本題考查了三角形的高的定義,熟記概念是解題的關(guān)鍵.4、D【解析】由拋物線的開口向下知a<0,與y軸的交點為在y軸的正半軸上,得c>0,對稱軸為x=<1,∵a<0,∴2a+b<0,而拋物線與x軸有兩個交點,∴?4ac>0,當(dāng)x=2時,y=4a+2b+c<0,當(dāng)x=1時,a+b+c=2.∵>2,∴4ac?<8a,∴+8a>4ac,∵①a+b+c=2,則2a+2b+2c=4,②4a+2b+c<0,③a?b+c<0.由①,③得到2a+2c<2,由①,②得到2a?c<?4,4a?2c<?8,上面兩個相加得到6a<?6,∴a<?1.故選D.點睛:本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)中,a的符號由拋物線的開口方向決定;c的符號由拋物線與y軸交點的位置決定;b的符號由對稱軸位置與a的符號決定;拋物線與x軸的交點個數(shù)決定根的判別式的符號,注意二次函數(shù)圖象上特殊點的特點.5、C【解析】試題解析:根據(jù)特殊角的三角函數(shù)值,可知:故選C.6、A【解析】
根據(jù)左視圖的概念得出各選項幾何體的左視圖即可判斷.【詳解】解:A選項幾何體的左視圖為;
B選項幾何體的左視圖為;
C選項幾何體的左視圖為;
D選項幾何體的左視圖為;
故選:A.【點睛】本題考查由三視圖判斷幾何體,解題的關(guān)鍵是熟練掌握左視圖的概念.7、B【解析】
根據(jù)無理數(shù)的概念可判斷出無理數(shù)的個數(shù).【詳解】解:無理數(shù)有:,.故選B.【點睛】本題主要考查了無理數(shù)的定義,注意帶根號的要開不盡方才是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù).8、A【解析】解:如圖,連接BE,設(shè)BE與AC交于點P′,∵四邊形ABCD是正方形,∴點B與D關(guān)于AC對稱,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最?。碢在AC與BE的交點上時,PD+PE最小,為BE的長度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故選A.點睛:此題考查了軸對稱﹣﹣最短路線問題,正方形的性質(zhì),要靈活運用對稱性解決此類問題.找出P點位置是解題的關(guān)鍵.9、D【解析】
根據(jù)在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或-k,即可求得答案.【詳解】∵點A(-4,2),B(-6,-4),以原點O為位似中心,相似比為,把△ABO縮小,∴點A的對應(yīng)點A′的坐標(biāo)是:(-2,1)或(2,-1).故選D.【點睛】此題考查了位似圖形與坐標(biāo)的關(guān)系.此題比較簡單,注意在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)比等于±k.10、D【解析】
根據(jù)切線的判定,圓的知識,可得答案.【詳解】解:A、在等圓或同圓中,長度相等的弧是等弧,故A錯誤;B、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧,故B錯誤;C、經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線,故C錯誤;D、在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑,故D正確;故選:D.【點睛】本題考查了切線的判定及圓的知識,利用圓的知識及切線的判定是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、或7【解析】
分兩種情況:①如圖1,作輔助線,構(gòu)建矩形,先由勾股定理求斜邊AB=10,由中點的定義求出AD和BD的長,證明四邊形HFGB是矩形,根據(jù)同角的三角函數(shù)列式可以求DG和DF的長,并由翻折的性質(zhì)得:∠DA'E=∠A,A'D=AD=5,由矩形性質(zhì)和勾股定理可以得出結(jié)論:A'B=;②如圖2,作輔助線,構(gòu)建矩形A'MNF,同理可以求出A'B的長.【詳解】解:分兩種情況:如圖1,過D作DG⊥BC與G,交A'E與F,過B作BH⊥A'E與H,D為AB的中點,BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四邊形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如圖2,過D作MN//AC,交BC與于N,過A'作A'F//AC,交BC的延長線于F,延長A'E交直線DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四邊形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;綜上所述,A'B的長為或.故答案為:或.【點睛】本題主要考查三角形翻轉(zhuǎn)后的性質(zhì),注意不同的情況需分情況討論.12、m(m+n)(m﹣n).【解析】試題分析:原式==m(m+n)(m﹣n).故答案為:m(m+n)(m﹣n).考點:提公因式法與公式法的綜合運用.13、【解析】∵正六角星形A2F2B2D2C2E2邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A2F2B2D2C2E2面積是正六角星形A1F1B1D1C1E面積的.同理∵正六角星形A4F4B4D4C4E4邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A4F4B4D4C4E4面積是正六角星形A1F1B1D1C1E面積的.14、(1,)或(﹣1,)【解析】
設(shè)當(dāng)⊙M與y軸相切時圓心M的坐標(biāo)為(x,x+2),再根據(jù)⊙M的半徑為1即可得出y的值.【詳解】解:∵⊙M的圓心在一次函數(shù)y=x+2的圖象上運動,∴設(shè)當(dāng)⊙M與y軸相切時圓心M的坐標(biāo)為(x,x+2),∵⊙M的半徑為1,∴x=1或x=?1,當(dāng)x=1時,y=,當(dāng)x=?1時,y=.∴P點坐標(biāo)為:(1,)或(?1,).故答案為(1,)或(?1,).【點睛】本題考查了切線的性質(zhì)與一次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是熟練的掌握切線的性質(zhì)與一次函數(shù)圖象上點的坐標(biāo)特征.15、【解析】a3-a=a(a2-1)=16、(﹣2,2)【解析】試題分析:∵直線y=2x+4與y軸交于B點,∴x=0時,得y=4,∴B(0,4).∵以O(shè)B為邊在y軸右側(cè)作等邊三角形OBC,∴C在線段OB的垂直平分線上,∴C點縱坐標(biāo)為2.將y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐標(biāo)為(﹣2,2).考點:2.一次函數(shù)圖象上點的坐標(biāo)特征;2.等邊三角形的性質(zhì);3.坐標(biāo)與圖形變化-平移.三、解答題(共8題,共72分)17、(Ⅰ)D′(3+,3);(Ⅱ)當(dāng)BB'=時,四邊形MBND'是菱形,理由見解析;(Ⅲ)P().【解析】
(Ⅰ)如圖①中,作DH⊥BC于H.首先求出點D坐標(biāo),再求出CC′的長即可解決問題;(Ⅱ)當(dāng)BB'=時,四邊形MBND'是菱形.首先證明四邊形MBND′是平行四邊形,再證明BB′=BC′即可解決問題;(Ⅲ)在△ABP中,由三角形三邊關(guān)系得,AP<AB+BP,推出當(dāng)點A,B,P三點共線時,AP最大.【詳解】(Ⅰ)如圖①中,作DH⊥BC于H,∵△AOB是等邊三角形,DC∥OA,∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,∴△CDB是等邊三角形,∵CB=2,DH⊥CB,∴CH=HB=,DH=3,∴D(6﹣,3),∵C′B=3,∴CC′=2﹣3,∴DD′=CC′=2﹣3,∴D′(3+,3).(Ⅱ)當(dāng)BB'=時,四邊形MBND'是菱形,理由:如圖②中,∵△ABC是等邊三角形,∴∠ABO=60°,∴∠ABB'=180°﹣∠ABO=120°,∵BN是∠ACC'的角平分線,∴∠NBB′'=∠ABB'=60°=∠D′C′B,∴D'C'∥BN,∵AB∥B′D′∴四邊形MBND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MC′B'和△NBB'是等邊三角形,∴MC=CE',NC=CC',∵B'C'=2,∵四邊形MBND'是菱形,∴BN=BM,∴BB'=B'C'=;(Ⅲ)如圖連接BP,在△ABP中,由三角形三邊關(guān)系得,AP<AB+BP,∴當(dāng)點A,B,P三點共線時,AP最大,如圖③中,在△D'BE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'==2.此時P(,﹣).【點睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質(zhì),菱形的性質(zhì),平移和旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,解(2)的關(guān)鍵是四邊形MCND'是平行四邊形,解(3)的關(guān)鍵是判斷出點A,C,P三點共線時,AP最大.18、解:(1)22.1.(2)設(shè)需要售出x部汽車,由題意可知,每部汽車的銷售利潤為:21-[27-0.1(x-1)]=(0.1x+0.9)(萬元),當(dāng)0≤x≤10,根據(jù)題意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,解這個方程,得x1=-20(不合題意,舍去),x2=2.當(dāng)x>10時,根據(jù)題意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解這個方程,得x1=-24(不合題意,舍去),x2=3.∵3<10,∴x2=3舍去.答:要賣出2部汽車.【解析】一元二次方程的應(yīng)用.(1)根據(jù)若當(dāng)月僅售出1部汽車,則該部汽車的進價為27萬元,每多售出1部,所有售出的汽車的進價均降低0.1萬元/部,得出該公司當(dāng)月售出3部汽車時,則每部汽車的進價為:27-0.1×2=22.1.,(2)利用設(shè)需要售出x部汽車,由題意可知,每部汽車的銷售利潤,根據(jù)當(dāng)0≤x≤10,以及當(dāng)x>10時,分別討論得出即可.19、(1)證明見解析;(2)CE=1.【解析】
(1)根據(jù)等角對等邊得∠OBE=∠OEB,由角平分線的定義可得∠OBE=∠EBC,從而可得∠OEB=∠EBC,根據(jù)內(nèi)錯角相等,兩直線平行可得OE∥BC,根據(jù)兩直線平行,同位角相等可得∠OEA=90°,從而可證AC是⊙O的切線.
(2)根據(jù)垂徑定理可求BH=BF=3,根據(jù)三個角是直角的四邊形是矩形,可得四邊形OHCE是矩形,由矩形的對邊相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的長,從而求出CE的長.【詳解】(1)證明:如圖,連接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵∠ACB=90°,
∴∠OEA=∠ACB=90°,
∴AC是⊙O的切線.
(2)解:過O作OH⊥BF,
∴BH=BF=3,四邊形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.【點睛】本題考查切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線和垂徑定理以及勾股定理的運用,具有一定的綜合性.20、(1)200,;(2)a=0.45,b=70;(3)900名.【解析】
(1)根據(jù)“一般”和“不知道”的頻數(shù)和頻率求總數(shù)即可(2)根據(jù)(1)的總數(shù),結(jié)合頻數(shù),頻率的大小可得到結(jié)果(3)根據(jù)“非常喜歡”學(xué)生的比值就可以計算出2000名學(xué)生中的人數(shù).【詳解】解:(1)“一般”頻數(shù)30,“不知道”頻數(shù)10,兩者頻率0.20,根據(jù)頻數(shù)的計算公式可得,總數(shù)=頻數(shù)/頻率=(名);(2)“非常喜歡”頻數(shù)90,a=;(3).故答案為(1)200,;(2)a=0.45,b=70;(3)900名.【點睛】此題重點考察學(xué)生對頻數(shù)和頻率的應(yīng)用,掌握頻率的計算公式是解題的關(guān)鍵.21、證明過程見解析【解析】
由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再結(jié)合條件可證明△ABC≌△DEC.【詳解】∵∠BAE=∠BCE=∠ACD=90°,∴∠5+∠4=∠4+∠3,∴∠5=∠3,且∠B+∠CEA=180°,又∠7+∠CEA=180°,∴∠B=∠7,在△ABC和△DEC中,∴△ABC≌△DEC(ASA).22、(1)y=﹣2t+200(1≤t≤80,t為整數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025四川自貢匯東人力資源發(fā)展有限責(zé)任公司招聘人員4人參考考試題庫及答案解析
- 2026春季湖南長沙市平高高級中學(xué)誠聘精英教師21人參考考試題庫及答案解析
- 物聯(lián)網(wǎng)技術(shù)在制造崗位應(yīng)用方案
- 2025河北唐山遵化市事業(yè)單位選聘高層次人才8人備考筆試題庫及答案解析
- 2025年福建莆田市城廂區(qū)常太鎮(zhèn)衛(wèi)生院編外人員招聘1人考試備考題庫及答案解析
- 2025年大慶高新區(qū)公益性崗位招聘10人參考考試題庫及答案解析
- 建筑工程項目進度控制方案大全
- 2025大連理工大學(xué)附屬高級中學(xué)招聘備考考試試題及答案解析
- 2026年河北張家口經(jīng)開區(qū)編辦青年就業(yè)見習(xí)崗位招聘模擬筆試試題及答案解析
- 預(yù)拋施工方案(3篇)
- 生產(chǎn)車間安全管理檢查表及整改措施
- 電廠標(biāo)識系統(tǒng)KKS編碼說明pdf
- 2023年郴州職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性考試題庫及答案詳解1套
- 2025年福建省綜合評標(biāo)專家?guī)炜荚囶}庫(二)
- 完整版醫(yī)療器械基礎(chǔ)知識培訓(xùn)考試試題及答案
- 220kV電網(wǎng)輸電線路的繼電保護設(shè)計
- 《無人機地面站與任務(wù)規(guī)劃》 課件全套 第1-9章 概論 -無人機內(nèi)業(yè)數(shù)據(jù)整與處理
- 屋頂光伏承重安全檢測鑒定
- 長輸管道項目驗收總結(jié)與報告
- 2025年高考數(shù)學(xué)真題分類匯編專題03 三角函數(shù)(全國)(解析版)
- 中國石化項目管理辦法
評論
0/150
提交評論