難點解析-京改版數(shù)學(xué)9年級上冊期中測試卷附參考答案詳解(精練)_第1頁
難點解析-京改版數(shù)學(xué)9年級上冊期中測試卷附參考答案詳解(精練)_第2頁
難點解析-京改版數(shù)學(xué)9年級上冊期中測試卷附參考答案詳解(精練)_第3頁
難點解析-京改版數(shù)學(xué)9年級上冊期中測試卷附參考答案詳解(精練)_第4頁
難點解析-京改版數(shù)學(xué)9年級上冊期中測試卷附參考答案詳解(精練)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期中測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、在中,若tanA=1,cosB=,則下列判斷最確切的是(

)A.是等腰三角形 B.是等腰直角三角形C.是直角三角形 D.是一般銳角三角形2、如圖,在平面直角坐標(biāo)系中,菱形OABC的邊OA在x軸上,點,.若反比例函數(shù)經(jīng)過點C,則k的值等于(

)A.10 B.24 C.48 D.503、如圖,在△ABC中,點G為△ABC的重心,過點G作DE∥BC,分別交AB、AC于點D、E,則△ADE與四邊形DBCE的面積比為()A. B. C. D.4、把拋物線的圖象向左平移1個單位,再向上平移2個單位,所得的拋物線的函數(shù)關(guān)系式是(

)A. B.C. D.5、已知拋物線的對稱軸在軸右側(cè),現(xiàn)將該拋物線先向右平移3個單位長度,再向上平移1個單位長度后,得到的拋物線正好經(jīng)過坐標(biāo)原點,則的值是(

)A.或2 B. C.2 D.6、如圖,在中,,,將繞點C順時針旋轉(zhuǎn)得到,點在上,交于F,則圖中與相似的三角形有(不再添加其他線段)(

)A.1個 B.2個 C.3個 D.4個二、多選題(7小題,每小題2分,共計14分)1、如圖,下列條件能判定△ABC與△ADE相似的是(

)A. B.∠B=∠ADEC. D.∠C=∠AED2、如果α、β都是銳角,下面式子中不正確的是(

)A.sin(α+β)=sinα+sinβ B.cos(α+β)=時,α+β=60°C.若α≥β時,則cosα≥cosβ D.若cosα>sinβ,則α+β>90°3、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+174、已知Rt△ABC中,∠C=90°,AC=2,BC=3,則下列各式中,不正確的是()A.sinB= B.cosB= C.tanB= D.以上都不對5、如圖,在△ABC中,點D在邊AC上,下列條件中,不能判斷△BDC與△ABC相似的是(

)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA6、如圖所示,AB為斜坡,D是斜坡AB上一點,斜坡AB的坡度為i,坡角為,于點C,下面正確的有(

)A. B.C. D.7、如圖,△ABC中,D在AB上,E在AC上,下列條件中,不能判定DE∥BC的是(

).A. B.C. D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、對于任意實數(shù),拋物線與軸都有公共點.則的取值范圍是_______.2、如圖是用杠桿撬石頭的示意圖,是支點,當(dāng)用力壓杠桿的端時,杠桿繞點轉(zhuǎn)動,另一端向上翹起,石頭就被撬動.現(xiàn)有一塊石頭,要使其滾動,杠桿的端必須向上翹起,已知杠桿的動力臂與阻力臂之比為6:1,要使這塊石頭滾動,至少要將杠桿的端向下壓______.3、如圖,點D,E分別在△ABC的邊AC,AB上,△ADE∽△ABC,M,N分別是DE,BC的中點,若=,則=__.4、如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像分別交、軸于點、,將直線繞點按順時針方向旋轉(zhuǎn),交軸于點,則直線的函數(shù)表達(dá)式是__________.5、二次函數(shù)y=ax2+bx+c圖象上部分點的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如表格所示,那么它的圖象與x軸的另一個交點坐標(biāo)是_____.6、如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值為_________.7、在Rt△ABC中,∠C=90°,AB=6,cosB=,則BC的長為_____.四、解答題(6小題,每小題10分,共計60分)1、據(jù)說,在距今2500多年前,古希臘數(shù)學(xué)家就已經(jīng)較準(zhǔn)確地測出了埃及金字塔的高度,操作過程大致如下:如圖所示,設(shè)AB是金字塔的高,在某一時刻,陽光照射下的金字塔在底面上投下了一個清晰的陰影,塔頂A的影子落在地面上的點C處,金字塔底部可看作方正形FGHI,測得正方形邊長FG長為160米,點B在正方形的中心,BC與金字塔底部一邊垂直于點K,與此同時,直立地面上的一根標(biāo)桿DO留下的影子是OE,射向地面的太陽光線可看作平行線(AC∥DE),此時測得標(biāo)桿DO長為1.2米,影子OE長為2.7米,KC長為250米,求金字塔的高度AB及斜坡AK的坡度(結(jié)果均保留四個有效數(shù)字)2、拋物線過點,點,頂點為.(1)求拋物線的表達(dá)式及點的坐標(biāo);(2)如圖1,點在拋物線上,連接并延長交軸于點,連接,若是以為底的等腰三角形,求點的坐標(biāo);(3)如圖2,在(2)的條件下,點是線段上(與點,不重合)的動點,連接,作,邊交軸于點,設(shè)點的橫坐標(biāo)為,求的取值范圍.3、已知,如圖,二次函數(shù)的圖象與軸交于A,兩點,與軸交于點,且經(jīng)過點(1)求該拋物線的解析式;(2)求該拋物線的頂點坐標(biāo)和對稱軸.(3)求的面積,寫出時的取值范圍.4、如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點,與軸交于點,連接.(1)求拋物線的解析式;(2)點在拋物線的對稱軸上,當(dāng)?shù)闹荛L最小時,點的坐標(biāo)為_____________;(3)點是第四象限內(nèi)拋物線上的動點,連接和.求面積的最大值及此時點的坐標(biāo);(4)若點是對稱軸上的動點,在拋物線上是否存在點,使以點、、、為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.5、已知拋物線.(1)該拋物線的對稱軸為;(2)若該拋物線的頂點在x軸上,求拋物線的解析式;(3)設(shè)點M(m,),N(2,)在該拋物線上,若>,求m的取值范圍.6、如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A坐標(biāo)為(3,0),四邊形OABC為平行四邊形,反比例函數(shù)y=(x>0)的圖象經(jīng)過點C,與邊AB交于點D,若OC=2,tan∠AOC=1.(1)求反比例函數(shù)解析式;(2)點P(a,0)是x軸上一動點,求|PC-PD|最大時a的值;(3)連接CA,在反比例函數(shù)圖象上是否存在點M,平面內(nèi)是否存在點N,使得四邊形CAMN為矩形,若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.-參考答案-一、單選題1、B【解析】【分析】先根據(jù)正切值、余弦值求出、的度數(shù),再根據(jù)三角形的內(nèi)角和定理可得的度數(shù),然后根據(jù)等腰直角三角形的定義即可得.【詳解】、是的內(nèi)角,且,,,,,是等腰直角三角形,故選:B.【考點】本題考查了特殊角的正切值與余弦值、三角形的內(nèi)角和定理、等腰直角三角形的定義,熟記特殊角的正切值與余弦值是解題關(guān)鍵.2、C【解析】【分析】由菱形的性質(zhì)和銳角三角函數(shù)可求點,將點C坐標(biāo)代入解析式可求k的值.【詳解】解:如圖,過點C作于點E,∵菱形OABC的邊OA在x軸上,點,∴,∵.∴,∴∴點C坐標(biāo)∵若反比例函數(shù)經(jīng)過點C,∴故選C.【考點】本題考查了反比例函數(shù)性質(zhì),反比例函數(shù)圖象上點的坐標(biāo)特征,菱形的性質(zhì),銳角三角函數(shù),關(guān)鍵是求出點C坐標(biāo).3、A【解析】【分析】連接AG并延長交BC于H,如圖,利用三角形重心的性質(zhì)得到AG=2GH,再證明△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)得到==,然后根據(jù)比例的性質(zhì)得到△ADE與四邊形DBCE的面積比.【詳解】解:連接AG并延長交BC于H,如圖,∵點G為△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE與四邊形DBCE的面積比=.故選:A.【考點】本題考查了三角形的重心與相似三角形的性質(zhì)與判定.重心到頂點的距離與重心到對邊中點的距離之比為2∶1.4、A【解析】【分析】求出原拋物線的頂點坐標(biāo),再根據(jù)向左平移橫坐標(biāo)減,向上平移縱坐標(biāo)加求出平移后的拋物線的頂點坐標(biāo),然后利用頂點式解析式寫出即可.【詳解】解:∵拋物線的頂點坐標(biāo)為(2,1),∴向左平移1個單位,再向上平移2個單位后的頂點坐標(biāo)是(1,3)∴所得拋物線解析式是.故選:A.【考點】本題考查了二次函數(shù)圖象的平移,利用頂點的變化確定拋物線解析式的變化更簡便.5、B【解析】【分析】根據(jù)二次函數(shù)圖象左加右減,上加下減的平移規(guī)律進(jìn)行解答即可.【詳解】解:函數(shù)向右平移3個單位,得:;再向上平移1個單位,得:+1,∵得到的拋物線正好經(jīng)過坐標(biāo)原點∴+1即解得:或∵拋物線的對稱軸在軸右側(cè)∴>0∴<0∴故選:B.【考點】此題主要考查了函數(shù)圖象的平移,要求熟練掌握平移的規(guī)律:左加右減,上加下減.6、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)及相似三角形的判定方法進(jìn)行分析,找出存在的相似三角形即可.【詳解】根據(jù)題意得:BC=B′C,AB=A′B′,AC=A′C,∠B=∠B′,∠A=∠A′=30°,∠ACB=∠A′CB′=90°∵∠A=30°,∠ACB=90°∴∠B=60°∴BB′=BC=B′C,∠B=∠BCB′=∠BB′C=60°∴∠B′CA=30°,∠ACA′=60°,A′B′∥BC∴∠B′FC=∠B′FA=90°∴△AB′F∽△ABC∽△A′B′C∽△A′CF∽△CFB′∴有4個故選D.【考點】考查了相似三角形的判定:①如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應(yīng)邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應(yīng)角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.二、多選題1、ABD【解析】【分析】利用兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似可對A、C進(jìn)行判斷;根據(jù)有兩組角對應(yīng)相等的兩個三角形相似可對B、C進(jìn)行判斷.【詳解】解:∵∠EAD=∠BAC,當(dāng),∠A=∠A,∴△ABC∽△ADE,故選項A符合題意;當(dāng)∠B=∠ADE時,△ABC∽△ADE,故選項B符合題意;C選項中角A不是成比例的兩邊的夾角,故選項C不符合題意;當(dāng)∠C=∠AED時,△ABC∽△ADE,故選項D符合題意;故選:ABD.【考點】本題考查了相似三角形的判定:①有兩個對應(yīng)角相等的三角形相似;②有兩個對應(yīng)邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應(yīng)邊的比相等,則兩個三角形相似.2、ACD【解析】【分析】可以選擇特殊值代入,進(jìn)行分析.【詳解】解:A中,如α=30°,β=60°時,而sin(α+β)=sin90°=1,sin30°+sin60°=,顯然錯誤,符合題意;B中,根據(jù)cos60°=,正確,不符合題意;C中,如α=60°,β=30°時,而cos60°=,cos30°=,顯然錯誤,符合題意;D中,如cos30°>sin45°,錯誤,符合題意.故選:ACD.【考點】本題考查了特殊角的三角函數(shù)值,記憶特殊角的三角函數(shù)值是解題的關(guān)鍵.3、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標(biāo)函數(shù)圖象到原函數(shù)圖象方向正好相反.4、ABD【解析】【分析】根據(jù)勾股定理求出AB的值,再根據(jù)銳角三角函數(shù)定義求出的三個函數(shù)值,進(jìn)行判斷即可得.【詳解】解:如圖所示,在中,AC=2,BC=3,根據(jù)勾股定理,,A、,選項說法錯誤,符合題意;B、,選項說法錯誤,符合題意;C、,選項說法正確,不符合題意;D、選項C說法正確,選項說法錯誤,符合題意;故選ABD.【考點】本題考查了銳角三角形函數(shù)的定義,解題的關(guān)鍵是掌握勾股定理和銳角三角函數(shù)的定義.5、ABD【解析】【分析】根據(jù)三角形相似的判斷方法逐個判斷即可.【詳解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合題意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合題意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故選項不符合題意;D、BD2=CD·DA,不能判定△BDC與△ABC,符合題意;故選:ABD.【考點】此題考查了三角形相似的判定方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.6、BCD【解析】【分析】根據(jù)坡度的定義解答即可.【詳解】交于點,交于點,,,,,,∴BCD正確.故選:BCD.【考點】本題考查了解直角三角形的應(yīng)用-坡度坡角問題,熟記坡度的定義是解題的關(guān)鍵.7、BCD【解析】【分析】利用各選項給定的條件,結(jié)合再證明,可得,逐一分析各選項,從而可得答案.【詳解】解:A、而則故A不符合題意;B、與不一定相似,則與不一定相等,不一定平行,故B符合題意;C、,而而不一定相等,故不一定平行,故C符合題意;D、與不一定相似,則與不一定相等,不一定平行,故D符合題意;故選:BCD.【考點】本題考查的是相似三角形的判定與性質(zhì),平行線的判定,掌握兩邊對應(yīng)成比例且夾角相等的兩個三角形相似是解題的關(guān)鍵.三、填空題1、【解析】【分析】由題意易得,則有,然后設(shè),由無論a取何值時,拋物線與軸都有公共點可進(jìn)行求解.【詳解】解:由拋物線與軸都有公共點可得:,即,∴,設(shè),則,要使對于任意實數(shù),拋物線與軸都有公共點,則需滿足小于等于的最小值即可,∴,即的最小值為,∴;故答案為.【考點】本題主要考查二次函數(shù)的綜合,熟練掌握二次函數(shù)的綜合是解題的關(guān)鍵.2、60【解析】【分析】首先根據(jù)題意構(gòu)造出相似三角形,然后根據(jù)相似三角形的對應(yīng)邊成比例求得端點A向下壓的長度.【詳解】解:如圖;AM、BN都與水平線垂直,即AM∥BN;易知:△ACM∽△BCN;∴,∵AC與BC之比為6:1,∴,即AM=6BN;∴當(dāng)BN≥10cm時,AM≥60cm;故要使這塊石頭滾動,至少要將杠桿的端點A向下壓60cm.故答案為:60.【考點】本題考查相似三角形的判定與性質(zhì)的實際應(yīng)用,正確的構(gòu)造相似三角形是解題的關(guān)鍵.3、【解析】【分析】根據(jù)相似三角形對應(yīng)中線的比等于相似比求出,根據(jù)相似三角形面積的比等于相似比的平方解答即可.【詳解】解:∵M(jìn),N分別是DE,BC的中點,∴AM、AN分別為△ADE、△ABC的中線,∵△ADE∽△ABC,∴==,∴=()2=,故答案為:.【考點】本題考查了相似三角形的性質(zhì),掌握相似三角形面積的比等于相似比的平方、相似三角形對應(yīng)中線的比等于相似比是解題的關(guān)鍵.4、【解析】【分析】先根據(jù)一次函數(shù)求得、坐標(biāo),再過作的垂線,構(gòu)造直角三角形,根據(jù)勾股定理和正余弦公式求得的長度,得到點坐標(biāo),從而得到直線的函數(shù)表達(dá)式.【詳解】因為一次函數(shù)的圖像分別交、軸于點、,則,,則.過作于點,因為,所以由勾股定理得,設(shè),則,根據(jù)等面積可得:,即,解得.則,即,所以直線的函數(shù)表達(dá)式是.【考點】本題綜合考察了一次函數(shù)的求解、勾股定理、正余弦公式,以及根據(jù)一次函數(shù)的解求一次函數(shù)的表達(dá)式,要學(xué)會通過作輔助線得到特殊三角形,以便求解.5、(1,0)【解析】【分析】根據(jù)表中數(shù)據(jù)得到點(-2,-3)和(0,-3)對稱點,從而得到拋物線的對稱軸為直線x=-1,再利用表中數(shù)據(jù)得到拋物線與x軸的一個交點坐標(biāo)為(-3,0),然后根據(jù)拋物線的對稱性就看得到拋物線與x軸的一個交點坐標(biāo).【詳解】∵x=-2,y=-3;x=0時,y=-3,∴拋物線的對稱軸為直線x=-1,∵拋物線與x軸的一個交點坐標(biāo)為(-3,0),∴拋物線與x軸的一個交點坐標(biāo)為(1,0).故答案為(1,0).【考點】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標(biāo)問題轉(zhuǎn)化解關(guān)于x的一元二次方程即可求得交點橫坐標(biāo).也考查了二次函數(shù)的性質(zhì).6、2【解析】【分析】首先求出的頂點坐標(biāo)和與x軸兩個交點坐標(biāo),然后根據(jù)“特征三角形”是等腰直角三角形列方程求解即可.【詳解】解:∵∴,代入得:∴拋物線的頂點坐標(biāo)為∵當(dāng)時,即,解得:,∴拋物線與x軸兩個交點坐標(biāo)為和∵的“特征三角形”是等腰直角三角形,∴,即解得:.故答案為:2.【考點】此題考查了二次函數(shù)與x軸的交點問題,等腰直角三角形的性質(zhì),解題的關(guān)鍵是求出的頂點坐標(biāo)和與x軸兩個交點坐標(biāo).7、4【解析】【分析】根據(jù)銳角的余弦值等于鄰邊比對邊列式求解即可.【詳解】∵∠C=90°,AB=6,∴,∴BC=4.【考點】本題考查了勾股定理和銳角三角函數(shù)的概念,熟練掌握銳角三角函數(shù)的定義是解答本題的關(guān)鍵.在Rt△ABC中,,,.四、解答題1、金字塔的高度AB為米,斜坡AK的坡度為1.833.【解析】【分析】根據(jù)同一時刻物高與影長成正比例列式計算即可.【詳解】解:∵FGHI是正方形,點B在正方形的中心,BC⊥HG,∴BK∥FG,BK==×160=80,∵根據(jù)同一時刻物高與影長成正比例,∴,即,解得:AB=米,連接AK,=1.833.∴金字塔的高度AB為米,斜坡AK的坡度為1.833.【考點】本題考查了相似三角形的應(yīng)用,只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求解,解此題的關(guān)鍵是找到各部分以及與其對應(yīng)的影長.2、(1),;(2);(3)【解析】【分析】(1)將的坐標(biāo)代入解析式,待定系數(shù)法求解析式即可,根據(jù)頂點在對稱軸上,求得對稱軸,代入解析式即可的頂點的坐標(biāo);(2)設(shè),根據(jù)是以為底的等腰三角形,根據(jù),求得點的坐標(biāo),進(jìn)而求得解析式,聯(lián)立二次函數(shù)解析式,解方程組即可求得點的坐標(biāo);(3)根據(jù)題意,可得,設(shè),根據(jù)相似三角形的性質(zhì),線段成比例,可得,根據(jù)配方法可得的最大值,根據(jù)點是線段上(與點,不重合)的動點,可得的最小值,即可求得的范圍.【詳解】(1)拋物線過點,點,,解得,,,代入,解得:,頂點,(2)設(shè),,,是以為底的等腰三角形,即解得設(shè)直線的解析式為解得直線的解析式為聯(lián)立解得:,(3)點的橫坐標(biāo)為,,,,設(shè),則,是以為底的等腰三角形,,即整理得當(dāng)點與點重合時,與點重合,由題意,點是線段上(與點,不重合)的動點,的取值范圍為:.【考點】本題考查了二次函數(shù)綜合,相似三角形的性質(zhì)與判定,待定系數(shù)法求一次函數(shù)解析式,待定系數(shù)法求解析式,等腰三角形的性質(zhì),二次函數(shù)的性質(zhì),綜合運(yùn)用以上知識是解題的關(guān)鍵.3、(1);(2)頂點坐標(biāo)是,對稱軸是;(3)的面積為21,時,的取值范圍是.【解析】【分析】(1)直接利用待定系數(shù)法將已知點代入得出方程組求出答案;(2)直接利用配方法求出拋物線頂點坐標(biāo)和對稱軸即可;(3)首先求出拋物線與x軸的交點坐標(biāo),然后利用三角形面積公式和圖像得出答案.【詳解】(1)∵二次函數(shù)的圖象經(jīng)過點、,∴,解這個方程組,得,∴該二次函數(shù)的解析式是;(2),∴頂點坐標(biāo)是;對稱軸是;(3)∵二次函數(shù)的圖象與軸交于,兩點,∴,解這個方程得:,,即二次函數(shù)與軸的兩個交點的坐標(biāo)為,.∴的面積.由圖像可得,當(dāng)時,,故時,的取值范圍是.【考點】本題主要考查了待定系數(shù)法求函數(shù)表達(dá)式,求三角形面積,圖像法求自變量求職范圍,用配方法求拋物線頂點坐標(biāo)和對稱軸,求出函數(shù)表達(dá)式是解決問題的關(guān)鍵.4、(1);(2);(3)面積最大為,點坐標(biāo)為;(4)存在點,使以點、、、為頂點的四邊形是平行四邊形,,點坐標(biāo)為,,.【解析】【分析】(1)將點,代入即可求解;(2)BC與對稱軸的交點即為符合條件的點,據(jù)此可解;(3)過點作軸于點,交直線與點,當(dāng)EF最大時面積的取得最大值,據(jù)此可解;(4)根據(jù)平行四邊形對邊平行且相等的性質(zhì)可以得到存在點N使得以B,C,M,N為頂點的四邊形是平行四邊形.分三種情況討論.【詳解】解:(1)拋物線過點,解得:拋物線解析式為.(2)點,∴拋物線對稱軸為直線點在直線上,點,關(guān)于直線對稱,當(dāng)點、、在同一直線上時,最?。畳佄锞€解析式為,∴C(0,-6),設(shè)直線解析式為,解得:直線:,,故答案為:.(3)過點作軸于點,交直線與點,設(shè),則,當(dāng)時,面積最大為,此時點坐標(biāo)為.(4)存在點,使以點、、、為頂點的四邊形是平行四邊形.設(shè)N(x,y),M(,m),①四邊形CMNB是平行四邊形時,CM∥NB,CB∥MN,,∴x=,∴y==,∴N(,);②四邊形CNBM是平行四邊形時,CN∥BM,CM∥BN,,∴x=,∴y==∴N(,);③四邊形CNMB是平行四邊形時,CB∥MN,NC∥BM,,∴x=,∴y==∴N(,);點坐標(biāo)為(,),(,),(,).【考點】本題考查二次函數(shù)與幾何圖形的綜合題,熟練掌握二次函數(shù)的性質(zhì),靈活運(yùn)用數(shù)形結(jié)合思想得到坐標(biāo)之間的關(guān)系是解題的關(guān)鍵.5、(1)直線x=-1;(2)或;(3)當(dāng)a>0時,m<-4或m>2;當(dāng)a<0時,-4<m<2.【解析】【分析】(1)利用二次函數(shù)的對稱軸公式即可求得.(2)根據(jù)題意可知頂點坐標(biāo),再利用待定系數(shù)法即可求出二次函數(shù)解析式.(3)分類討論當(dāng)a>0時和a<0時二次函數(shù)的性質(zhì),即可求出m的取值范圍.【詳解】(1)利用二次函數(shù)的對稱軸公式可知對稱軸.故答案為:.(2)∵拋物線頂點在x軸上,對稱軸為,∴頂點坐標(biāo)為(-1,0).將頂點坐標(biāo)代入二次函數(shù)解析式得:,整理得:,解得:.∴拋物線解析式為或.(3)∵拋物線的對稱軸為直線x=-1,∴N(2,y2)關(guān)于直線x=-1的對稱點為(-4,y2).根據(jù)二次函數(shù)的性質(zhì)分類討論.(ⅰ)當(dāng)a>0時,拋物線開口向上,若y1>y2,即點M在點N或的上方,則m<-4或m>2;(ⅱ)當(dāng)a<0時,拋物線開口向下,若y1>y2,即點M在點N或的上方,則-4<m<2.【考點】本題為二次函數(shù)綜合題,掌握二次函數(shù)的性質(zhì)是解答本題的關(guān)鍵.6、(1)(2)|PC?PD|最大時a的值為6(3)存在,點M的坐標(biāo)為(,)【解析】【分析】(1)先確定出OE=CE=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論