版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,的半徑為6,將劣弧沿弦翻折,恰好經(jīng)過圓心O,點(diǎn)C為優(yōu)弧上的一個動點(diǎn),則面積的最大值是()A. B. C. D.2、在圓內(nèi)接四邊形ABCD中,∠A、∠B、∠C的度數(shù)之比為2:4:7,則∠B的度數(shù)為()A.140° B.100° C.80° D.40°3、如圖,為正六邊形邊上一動點(diǎn),點(diǎn)從點(diǎn)出發(fā),沿六邊形的邊以1cm/s的速度按逆時針方向運(yùn)動,運(yùn)動到點(diǎn)停止.設(shè)點(diǎn)的運(yùn)動時間為,以點(diǎn)、、為頂點(diǎn)的三角形的面積是,則下列圖像能大致反映與的函數(shù)關(guān)系的是()A. B.C. D.4、下列圖形中,既是中心對稱圖形又是抽對稱圖形的是()A. B. C. D.5、如圖,是的直徑,弦,垂足為,若,則()A.5 B.8 C.9 D.106、如圖,AB為的直徑,,,劣弧BC的長是劣弧BD長的2倍,則AC的長為()A. B. C.3 D.7、如圖,幾何體的左視圖是()A. B. C. D.8、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點(diǎn),連接,將線段繞點(diǎn)B逆時針旋轉(zhuǎn)得到,連接.則在點(diǎn)M運(yùn)動過程中,線段長度的最小值是()A. B.1 C.2 D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,在平行四邊形中,,,,以點(diǎn)為圓心,為半徑的圓弧交于點(diǎn),連接,則圖中黑色陰影部分的面積為________.(結(jié)果保留)2、如圖,AB是半圓O的弦,DE是直徑,過點(diǎn)B的切線BC與⊙O相切于點(diǎn)B,與DE的延長線交于點(diǎn)C,連接BD,若四邊形OABC為平行四邊形,則∠BDC的度數(shù)為______.3、從,0,1,2這四個數(shù)中任取一個數(shù),作為關(guān)于x的方程中a的值,則該方程有實(shí)數(shù)根的概率為_________.4、如圖,在等腰直角中,已知,將繞點(diǎn)逆時針旋轉(zhuǎn)60°,得到,連接,若,則________.5、如圖,一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,作的外接圓,則圖中陰影部分的面積為______.(結(jié)果保留π)6、如圖,中,,,,將繞原點(diǎn)O順時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對應(yīng)點(diǎn)的坐標(biāo)是____________.7、圖①所示,平整的地面上有一個不規(guī)則圖案(圖中陰影部分),小明想了解該圖案的面積是多少,他采取了以下辦法:用一個長為6m,寬為4m的長方形,將不規(guī)則圖案圍起來,然后在適當(dāng)位置隨機(jī)地朝長方形區(qū)域扔小球,并記錄小球落在不規(guī)則圖案上的次數(shù)(球扔在界線上或長方形區(qū)域外不計(jì)實(shí)驗(yàn)結(jié)果),他將若干次有效實(shí)驗(yàn)的結(jié)果繪制成了②所示的折線統(tǒng)計(jì)圖,由此他估計(jì)不規(guī)則圖案的面積大約為_____m2.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖,在6×6的方格紙中,每個小正方形的頂點(diǎn)稱為格點(diǎn),每個小正方形的邊長均為1,A,B兩點(diǎn)均在格點(diǎn)上.請按要求在圖①,圖②,圖③中畫圖:(1)在圖①中,畫等腰△ABC,使AB為腰,點(diǎn)C在格點(diǎn)上.(2)在圖②中,畫面積為8的四邊形ABCD,使其為中心對稱圖形,但不是軸對稱圖形,C,D兩點(diǎn)均在格點(diǎn)上.(3)在圖③中,畫△ABC,使∠ACB=90°,面積為5,點(diǎn)C在格點(diǎn)上.2、如圖,是的弦,是上的一點(diǎn),且,于點(diǎn),交于點(diǎn).若的半徑為6,求弦的長.3、如圖1,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點(diǎn),過點(diǎn)A作軸,做直線AC平行x軸,點(diǎn)D是二次函數(shù)的圖象與x軸的一個公共點(diǎn)(點(diǎn)D與點(diǎn)O不重合).(1)求點(diǎn)D的橫坐標(biāo)(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時的二次函數(shù)表達(dá)式.(3)在(2)的條件下,如圖2,P為OC的中點(diǎn),在直線AC上取一點(diǎn)M,連接PM,做點(diǎn)C關(guān)于PM的對稱點(diǎn)N,①連接AN,求AN的最小值.②當(dāng)點(diǎn)N落在拋物線的對稱軸上,求直線MN的函數(shù)表達(dá)式.4、根據(jù)要求回答以下視圖問題:(1)如圖①,它是由5個小正方體擺成的一個幾何體,將正方體①移走后,新幾何體與原幾何體相比,視圖沒有發(fā)生變化;(2)如圖②,請你在網(wǎng)格紙中畫出該幾何體的主視圖(請用斜線陰影表示);(3)如圖③,它是由幾個小正方體組成的幾何體的俯視圖,小正方形上的數(shù)字表示該位置上的正方體的個數(shù),請?jiān)诰W(wǎng)格紙中畫出該幾何體的左視圖(請用斜線陰影表示).5、綜合與實(shí)踐“利用尺規(guī)作圖三等分一個任意角”曾是數(shù)學(xué)史上一大難題,之后被數(shù)學(xué)家證明是不可能完成的.人們根據(jù)實(shí)際需要,發(fā)明了一種簡易操作工具——三分角器.圖1是它的示意圖,其中與半圓的直徑在同一直線上,且的長度與半圓的半徑相等;與垂直于點(diǎn),足夠長.使用方法如圖2所示,若要把三等分,只需適當(dāng)放置三分角器,使經(jīng)過的頂點(diǎn),點(diǎn)落在邊上,半圓與另一邊恰好相切,切點(diǎn)為,則,就把三等分了.為了說明這一方法的正確性,需要對其進(jìn)行證明.獨(dú)立思考:(1)如下給出了不完整的“已知”和“求證”,請補(bǔ)充完整.已知:如圖2,點(diǎn),,,在同一直線上,,垂足為點(diǎn),________,切半圓于.求證:________________.探究解決:(2)請完成證明過程.應(yīng)用實(shí)踐:(3)若半圓的直徑為,,求的長度.6、某商家銷售一批盲盒,每一個看上去無差別的盲盒內(nèi)含有A,B,C,D四種玩具中的一種,抽到玩具B的有關(guān)統(tǒng)計(jì)量如表所示:抽盲盒總數(shù)50010001500200025003000頻數(shù)130273414566695843頻率0.2600.2730.2760.2830.2780.281(1)估計(jì)從這批盲盒中任意抽取一個是玩具B的概率是;(結(jié)果保留小數(shù)點(diǎn)后兩位)(2)小明從分別裝有A,B,C,D四種玩具的四個盲盒中隨機(jī)抽取兩個,請利用畫樹狀圖或列表的方法,求抽到的兩個玩具恰為玩具A和玩具C的概率.7、為堅(jiān)持“五育并舉”,落實(shí)立德樹人根本任務(wù),教育部出臺了“五項(xiàng)管理”舉措.我校對九年級部分家長就“五項(xiàng)管理”知曉情況作調(diào)查,A:完全知曉,B:知曉,C:基本知曉,D:不知曉.九年級組長將調(diào)查情況制成了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請根據(jù)圖中信息,回答下列問題:(1)共調(diào)查了多少名家長?寫出圖2中選項(xiàng)所對應(yīng)的圓心角,并補(bǔ)齊條形統(tǒng)計(jì)圖;(2)我校九年級共有450名家長,估計(jì)九年級“不知曉五項(xiàng)管理”舉措的家長有多少人;(3)已知選項(xiàng)中男女家長數(shù)相同,若從選項(xiàng)家長中隨機(jī)抽取2名家長參加“家校共育”座談會,請用列表或畫樹狀圖的方法,求抽取家長都是男家長的概率.-參考答案-一、單選題1、C【分析】如圖,過點(diǎn)C作CT⊥AB于點(diǎn)T,過點(diǎn)O作OH⊥AB于點(diǎn)H,交⊙O于點(diǎn)K,連接AO、AK,解直角三角形求出AB,求出CT的最大值,可得結(jié)論.【詳解】解:如圖,過點(diǎn)C作CT⊥AB于點(diǎn)T,過點(diǎn)O作OH⊥AB于點(diǎn)H,交⊙O于點(diǎn)K,連接AO、AK,由題意可得AB垂直平分線段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH?CT,∴CT?6+3=9,∴CT的最大值為9,∴△ABC的面積的最大值為=27,故選:C.【點(diǎn)睛】本題考查垂徑定理、三角函數(shù)、三角形的面積、垂線段最短等知識,解題的關(guān)鍵是求出CT的最大值,屬于中考??碱}型.2、C【分析】,,,進(jìn)而求解的值.【詳解】解:由題意知∵∴∴∵∴故選C.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形中對角互補(bǔ).解題的關(guān)鍵在于根據(jù)角度之間的數(shù)量關(guān)系求解.3、A【分析】設(shè)正六邊形的邊長為1,當(dāng)在上時,過作于而求解此時的函數(shù)解析式,當(dāng)在上時,延長交于點(diǎn)過作于并求解此時的函數(shù)解析式,當(dāng)在上時,連接并求解此時的函數(shù)解析式,由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,從而可得答案.【詳解】解:設(shè)正六邊形的邊長為1,當(dāng)在上時,過作于而當(dāng)在上時,延長交于點(diǎn)過作于同理:則為等邊三角形,當(dāng)在上時,連接由正六邊形的性質(zhì)可得:由正六邊形的對稱性可得:而由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,所以符合題意的是A,故選A【點(diǎn)睛】本題考查的是動點(diǎn)問題的函數(shù)圖象,銳角三角函數(shù)的應(yīng)用,正多邊形的性質(zhì),清晰的分類討論是解本題的關(guān)鍵.4、B【詳解】解:.是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;.既是軸對稱圖形,也是中心對稱圖形,故此選項(xiàng)符合題意;.是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;.不是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)不符合題意;故選:B.【點(diǎn)睛】本題主要考查了中心對稱圖形和軸對稱圖形的概念,解題的關(guān)鍵是判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;判斷中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.5、C【分析】連接,根據(jù)垂徑定理可得,設(shè)的半徑為,則,進(jìn)而勾股定理列出方程求得半徑,進(jìn)而求得【詳解】解:如圖,連接,∵是的直徑,弦,∴設(shè)的半徑為,則在中,,即解得即故選C【點(diǎn)睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.6、D【分析】連接,根據(jù)求得半徑,進(jìn)而根據(jù)的長,勾股定理的逆定理證明,根據(jù)弧長關(guān)系可得,即可證明是等邊三角形,求得,進(jìn)而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點(diǎn)睛】本題考查了弧與圓心角的關(guān)系,直徑所對的圓周角是90度,勾股定理,等邊三角形的判定,求得的長是解題的關(guān)鍵.7、D【分析】根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】根據(jù)左視圖的定義可知,這個幾何體的左視圖是選項(xiàng)D,故選:D.【點(diǎn)睛】本題考查簡單組合體的三視圖,解題的關(guān)鍵是理解三視圖的定義.8、A【分析】取CB的中點(diǎn)G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點(diǎn)G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵M(jìn)B旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點(diǎn).二、填空題1、【分析】過點(diǎn)C作于點(diǎn)H,根據(jù)正弦定義解得CH的長,再由扇形面積公式、三角形的面積公式解題即可.【詳解】解:過點(diǎn)C作于點(diǎn)H,在平行四邊形中,平行四邊形的面積為:,圖中黑色陰影部分的面積為:,故答案為:.【點(diǎn)睛】本題考查平行四邊形的性質(zhì)、扇形面積等知識,是基礎(chǔ)考點(diǎn),掌握相關(guān)知識是解題關(guān)鍵.2、【分析】先由切線的性質(zhì)得到∠OBC=90°,再由平行四邊形的性質(zhì)得到BO=BC,則∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【詳解】解:∵BC是圓O的切線,∴∠OBC=90°,∵四邊形ABCO是平行四邊形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案為:22.5°.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),切線的性質(zhì),等腰三角形的性質(zhì)與判定,三角形外角的性質(zhì),熟知切線的性質(zhì)是解題的關(guān)鍵.3、【分析】根據(jù)一元二次方程的定義,可得,根據(jù)一元二次方程的判別式的意義得到,可得,然后根據(jù)概率公式求解.【詳解】解:∵當(dāng)且,一元二次方程有實(shí)數(shù)根∴且從,0,1,2這四個數(shù)中任取一個數(shù),符合條件的結(jié)果有所得方程有實(shí)數(shù)根的概率為故答案為:【點(diǎn)睛】本題考查了列舉法求概率,一元二次方程的定義,一元二次方程根的判別式,掌握以上知識是解題的關(guān)鍵.4、【分析】如圖連接并延長,過點(diǎn)作交于點(diǎn),,由題意可知為等邊三角形,,,在中;在中計(jì)算求解即可.【詳解】解:如圖連接并延長,過點(diǎn)作交于點(diǎn),由題意可知,,為等邊三角形在中在中故答案為:.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形,勾股定理,含的直角三角形等知識.解題的關(guān)鍵在于做輔助線構(gòu)造直角三角形.5、【分析】先求出A、B、C坐標(biāo),再證明三角形BOC是等邊三角形,最后根據(jù)扇形面積公式計(jì)算即可.【詳解】過C作CD⊥OA于D∵一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,∴當(dāng)時,,B點(diǎn)坐標(biāo)為(0,1)當(dāng)時,,A點(diǎn)坐標(biāo)為∴∵作的外接圓,∴線段AB中點(diǎn)C的坐標(biāo)為,∴三角形BOC是等邊三角形∴∵C的坐標(biāo)為∴∴故答案為:【點(diǎn)睛】本題主要考查了一次函數(shù)的綜合運(yùn)用,求扇形面積.用已知點(diǎn)的坐標(biāo)表示相應(yīng)的線段是解題的關(guān)鍵.6、【分析】如圖(見解析),過點(diǎn)作軸于點(diǎn),點(diǎn)作軸于點(diǎn),設(shè),從而可得,先利用勾股定理可得,從而可得,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得,然后根據(jù)三角形全等的判定定理證出,最后根據(jù)全等三角形的性質(zhì)可得,由此即可得出答案.【詳解】解:如圖,過點(diǎn)作軸于點(diǎn),點(diǎn)作軸于點(diǎn),設(shè),則,在中,,在中,,,解得,,由旋轉(zhuǎn)的性質(zhì)得:,,,,在和中,,,,,故答案為:.【點(diǎn)睛】本題考查了勾股定理、旋轉(zhuǎn)、點(diǎn)坐標(biāo)等知識點(diǎn),畫出圖形,通過作輔助線,正確找出兩個全等三角形是解題關(guān)鍵.7、8.4【分析】首先假設(shè)不規(guī)則圖案面積為x,根據(jù)幾何概率知識求解不規(guī)則圖案占長方形的面積大??;繼而根據(jù)折線圖用頻率估計(jì)概率,綜合以上列方程求解.【詳解】解:假設(shè)不規(guī)則圖案面積為xm2,由已知得:長方形面積為24m2,根據(jù)幾何概率公式小球落在不規(guī)則圖案的概率為:,當(dāng)事件A試驗(yàn)次數(shù)足夠多,即樣本足夠大時,其頻率可作為事件A發(fā)生的概率估計(jì)值,故由折線圖可知,小球落在不規(guī)則圖案的概率大約為0.35,綜上有:=0.35,解得x=8.4.估計(jì)不規(guī)則圖案的面積大約為8.4m2.故答案為:8.4.【點(diǎn)睛】本題考查幾何概率以及用頻率估計(jì)概率,并在此基礎(chǔ)上進(jìn)行了題目創(chuàng)新,解題關(guān)鍵在于清晰理解題意,能從復(fù)雜的題目背景當(dāng)中找到考點(diǎn)化繁為簡,創(chuàng)新題目對基礎(chǔ)知識要求極高.三、解答題1、(1)見解析;(2)見解析;(3)見解析【分析】(1)因?yàn)锳B=5,作腰為5的等腰三角形即可(答案不唯一);(2)作邊長為2,高為4的平行四邊形即可;(3)根據(jù)(1)的結(jié)論,作BG邊的中線,即可得解.【詳解】解:(1)如圖①中,△ABC即為所求作(答案不唯一);(2)如圖②中,平行四邊形ABCD即為所求作;(3)如圖③中,△ABC即為所求作(答案不唯一);∵AB=AG,BC=CG,∴AC⊥BG,∵△ABG的面積為,∴△ABC的面積為5,且∠ACB=90°.【點(diǎn)睛】本題考查作圖-應(yīng)用與設(shè)計(jì),等腰三角形的判定和性質(zhì),勾股定理及其逆定理等知識,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識解決問題.2、【分析】連接OB,由圓周角定理得出∠AOB=2∠ACB=120°,再由垂徑定理得出∠AOE=∠AOB=60°、AB=2AE,在Rt△AOE中,由OA=2OE求解可得答案.【詳解】如圖,連接OB,則∠AOB=2∠ACB=120°,∵OD⊥AB,∴∠AOE=∠AOB=60°,∵AO=6,∴在Rt△AOE中,,∴AB=2AE,故答案為:.【點(diǎn)睛】本題主要考查圓周角定理,解題的關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。?、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設(shè)w=,根據(jù)OD=2b,BD=4-2b,構(gòu)造二次函數(shù)求解即可;(3)①點(diǎn)N在以P為圓心,以2為半徑的圓上運(yùn)動,當(dāng)P、N、A同側(cè)且共線時,AN最小,用勾股定理計(jì)算即可.②分點(diǎn)M在對稱軸的左側(cè)和右側(cè),兩種情形求解.(1)令y=0,得,解得x=0或x=2b,∵b>0,∴x=0舍去,∴點(diǎn)D的橫坐標(biāo)為2b.(2)設(shè)w=,∵點(diǎn)D的橫坐標(biāo)為2b,A(4,m),∴OD=2b,BD=4-2b,∴w==2b(4-2b)=,∵-4<0,∴當(dāng)b=1時,w有最大值,最大值為4,此時拋物線的解析式為.(3)①∵點(diǎn)A(4,m)在拋物線上,∴m==4,∴OC=4,∵P為OC的中點(diǎn),∴OP=PC=2,∵點(diǎn)C關(guān)于PM的對稱點(diǎn)N,∴OP=PC=PN=2,∴點(diǎn)N在以P為圓心,以2為半徑的圓上運(yùn)動,如圖所示,當(dāng)P、N、A同側(cè)且共線時,AN最小,∵AC=4,PC=2,∴PA=,∴AN的最小值為PA-PN=.②當(dāng)點(diǎn)N落在拋物線的對稱軸上,且M在對稱軸的左側(cè),如圖所示,設(shè)對稱軸與AC交于點(diǎn)H,交x軸于點(diǎn)Q,過點(diǎn)P作PG⊥HN,垂足為G,則QG=2,∵PC=PN=2,PG=1,∴NG=,∴HN=2-,點(diǎn)N(1,2+),設(shè)CM=a,則MN=a,MH=1-a,∴,解得a=4-2,∴點(diǎn)M(4-2,4),設(shè)直線MN的解析式為y=kx+b,∴,解得,∴直線MN的解析式為y=x+;當(dāng)點(diǎn)N落在拋物線的對稱軸上,且M在對稱軸的右側(cè),如圖所示,設(shè)對稱軸與AC交于點(diǎn)T,交x軸于點(diǎn)R,過點(diǎn)P作PK⊥TN,垂足為K,則KT=KR=2,∵PC=PN=2,PK=1,∴KR=,∴NR=2-,點(diǎn)N(1,2-),TN=2+設(shè)CM=b,則MN=b,MT=a-1,∴,解得b=4+2,∴點(diǎn)M(4+2,4),設(shè)直線MN的解析式為y=mx+q,∴,解得,∴直線MN的解析式為y=x+;綜上所述,直線MN的解析式為y=x+或y=x+.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn),二次函數(shù)的最值,圓的基本性質(zhì),待定系數(shù)法確定一次函數(shù)的解析式,軸對稱的性質(zhì),勾股定理,熟練掌握圓的性質(zhì),拋物線的性質(zhì),靈活運(yùn)用對稱的思想和勾股定理是解題的關(guān)鍵.4、(1)主(2)見解析(3)見解析【分析】(1)根據(jù)移開后的主視圖和沒有移開時的主視圖一致即可求解;(2)根據(jù)題意畫出主視圖即可;(3)根據(jù)從左邊起各列的小正方形數(shù)分別為2,3,1,畫出左視圖即可.(1)將正方體①移走后,新幾何體與原幾何體相比主視圖沒有變化,如圖,故答案為:主(2)圖②的主視圖如圖,(3)圖③的左視圖如圖,【點(diǎn)睛】本題考查了畫三視圖,根據(jù)立體圖形得出三視圖是解題的關(guān)鍵.5、(1),,將三等分;(2)見解析;(3)【分析】(1)根據(jù)題意即可得;(2)先證明與全等,然后根據(jù)全等的性質(zhì)可得,再由圓的切線的性質(zhì)可得,可得三個角相等,即可證明結(jié)論;(3)連,延長與相交于點(diǎn),由(2)結(jié)論可得,再由切線的性質(zhì),,然后利用勾股定理及線段間的數(shù)量關(guān)系可得,最后利用相似三角形的判定和性質(zhì)求解即可得.【詳解】解:(1),,將三等分,故答案為:;,將三等分,(2)證明:在與中,,,.,是的切線.、都是的切線,,,,將三等分.(3)如圖,連,延長與相交于點(diǎn),由(2),知.是的切線,,,.∵半徑,∴由勾股定理得,在中,,,.∵,,,,即,.【點(diǎn)睛】題目主要考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),圓的切線的性質(zhì),勾股定理等,理解題意,結(jié)合圖形綜合運(yùn)用這些知識點(diǎn)是解題關(guān)鍵.6、(1)0.28;(2)【分析】(1)由表中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 心血管病飲食宣教
- 智能車完成實(shí)訓(xùn)
- 麻醉藥健康宣教
- 膽管結(jié)石的宣教
- 綜合學(xué)科教研成果總結(jié)匯報
- 文本標(biāo)準(zhǔn)化服務(wù)協(xié)議
- 網(wǎng)絡(luò)直播帶貨分成合同協(xié)議
- 商務(wù)禮儀實(shí)訓(xùn)報告總結(jié)
- 托育中心員工激勵薪酬方案
- 2025福建漳州市龍文城建物業(yè)服務(wù)有限公司招聘若干人考試筆試模擬試題及答案解析
- 2026天津農(nóng)商銀行校園招聘考試歷年真題匯編附答案解析
- 2025重慶市環(huán)衛(wèi)集團(tuán)有限公司招聘27人筆試歷年參考題庫附帶答案詳解
- 鉆井安全操作規(guī)程
- 精密減速機(jī)行業(yè)發(fā)展現(xiàn)狀及趨勢預(yù)測報告2026-2032
- 中小學(xué)《信息技術(shù)》考試試題及答案
- 2025及未來5年掛鐘機(jī)芯項(xiàng)目投資價值分析報告
- IPO融資分析師融資報告模板
- 搏擊裁判員培訓(xùn)課件
- 2024年北京廣播電視臺招聘真題
- 危險廢物安全措施課件
- 形勢與政策(吉林大學(xué))單元測試(第11-25章)
評論
0/150
提交評論