版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省雙遼市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、在自習(xí)課上,小芳同學(xué)將一張長(zhǎng)方形紙片ABCD按如圖所示的方式折疊起來,她發(fā)現(xiàn)D、B兩點(diǎn)均落在了對(duì)角線AC的中點(diǎn)O處,且四邊形AECF是菱形.若AB=3cm,則陰影部分的面積為()A.1cm2 B.2cm2 C.cm2 D.cm22、如圖所示,圓柱的高AB=3,底面直徑BC=3,現(xiàn)在有一只螞蟻想要從A處沿圓柱表面爬到對(duì)角C處捕食,則它爬行的最短距離是()A. B. C. D.3、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.64、如圖,桌上有一個(gè)圓柱形玻璃杯(無蓋)高6厘米,底面周長(zhǎng)16厘米,在杯口內(nèi)壁離杯口1.5厘米的A處有一滴蜜糖,在玻璃杯的外壁,A的相對(duì)方向有一小蟲P,小蟲離杯底的垂直距離為1.5厘米,小蟲爬到蜜糖處的最短距離是(
)A.厘米 B.10厘米 C.厘米 D.8厘米5、如圖,以Rt△ABC的兩直角邊為邊向外作正方形,其面積分別為S1,S2,若S1=8cm2,S2=17cm2,則斜邊AB的長(zhǎng)是(
)A.3cm B.6cm C.4cm D.5cm6、《九章算術(shù)》中的“折竹抵地”問題:今有竹高一丈,末折抵地,去根六尺.問折高者幾何?意思是:一根竹子,原高一丈(一丈=10尺),一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠(yuǎn),問折斷處離地面的高度是多少?設(shè)折斷處離地面的高度為尺,則可列方程為(
)A. B.C. D.7、《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,記載著這樣一個(gè)問題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問水深、葭長(zhǎng)各幾何?”大意是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面.水的深度與這根蘆葦?shù)拈L(zhǎng)度分別是多少?設(shè)蘆葦?shù)拈L(zhǎng)度為x尺,則可列方程為()A.x2+52=(x+1)2 B.x2+102=(x+1)2C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)2第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、無蓋圓柱形杯子的展開圖如圖所示.將一根長(zhǎng)為20cm的細(xì)木筷斜放在該杯子內(nèi),木筷露在杯子外面的部分至少有__________cm.2、附加題:觀察以下幾組勾股數(shù),并尋找規(guī)律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…請(qǐng)你寫出有以上規(guī)律的第⑤組勾股數(shù):________.3、《九章算術(shù)》中記載著這樣一個(gè)問題:已知甲、乙兩人同時(shí)從同一地點(diǎn)出發(fā),甲的速度為7步/分,乙的速度為3步/分,乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇,那么相遇時(shí),甲、乙各走了多遠(yuǎn)?解:如圖,設(shè)甲乙兩人出發(fā)后x分鐘相遇.根據(jù)勾股定理可列得方程為______.4、如圖,已知中,,,動(dòng)點(diǎn)M滿足,將線段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到線段,連接,則的最小值為_________.5、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個(gè)正方形.若四個(gè)陰影部分面積分別為,,,,則的值為______,的值為______.6、如圖,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,點(diǎn)E在BC上,將△ABC沿AE折疊,使點(diǎn)B落在AC邊上的點(diǎn)B′處,則BE的長(zhǎng)為________________.7、如圖,在的正方形網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),點(diǎn)、、均在格點(diǎn)上,則______.8、如圖,在△ABC中,AB=10,BC=9,AC=17,則BC邊上的高為_______.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,已知半徑為5的⊙M經(jīng)過x軸上一點(diǎn)C,與y軸交于A、B兩點(diǎn),連接AM、AC,AC平分∠OAM,AO+CO=6(1)判斷⊙M與x軸的位置關(guān)系,并說明理由;(2)求AB的長(zhǎng);(3)連接BM并延長(zhǎng)交圓M于點(diǎn)D,連接CD,求直線CD的解析式.2、如圖,是一塊草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求這塊草坪的面積.3、有一只喜鵲在一棵高3米的小樹的樹梢上覓食,它的巢筑在距離該樹24米,高為14米的一棵大樹上,且巢離大樹頂部為1米,這時(shí),它聽到巢中幼鳥求助的叫聲,立刻趕過去,如果它的飛行速度為每秒5米,那么它至少幾秒能趕回巢中?4、如圖,有一架秋千,當(dāng)他靜止時(shí),踏板離地的垂直高度,將他往前推送(水平距離)時(shí),秋千的踏板離地的垂直高度,秋千的繩索始終拉得很直,求繩索的長(zhǎng)度.5、閱讀下面材料:小明遇到這樣一個(gè)問題:∠MBN=30°,點(diǎn)A為射線BM上一點(diǎn),且AB=4,點(diǎn)C為射線BN上動(dòng)點(diǎn),連接AC,以AC為邊在AC右側(cè)作等邊三角形ACD,連接BD.當(dāng)AC⊥BN時(shí),求BD的長(zhǎng).小明發(fā)現(xiàn):以AB為邊在左側(cè)作等邊三角形ABE,連接CE,能得到一對(duì)全等的三角形,再利用∠EBC=90°,從而將問題解決(如圖1).請(qǐng)回答:(1)在圖1中,小明得到的全等三角形是△≌△;BD的長(zhǎng)為.(2)動(dòng)點(diǎn)C在射線BN上運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到AC時(shí),求BD的長(zhǎng);(3)動(dòng)點(diǎn)C在射線BN上運(yùn)動(dòng),求△ABD周長(zhǎng)最小值.6、在△ABC中,,AB=5cm,AC=3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿射線BC以1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)△ABP為直角三角形時(shí),求t的值.7、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.-參考答案-一、單選題1、D【解析】【分析】由菱形的性質(zhì)得到∠FCO=∠ECO,進(jìn)而證明∠ECO=∠ECB=∠FCO=30°,2BE=CE,利用勾股定理得出BC=,再解得菱形的面積為2,最后由陰影部分的面積=S菱形AECF解題.【詳解】解:∵四邊形AECF是菱形,AB=3,∴假設(shè)BE=x,則AE=3﹣x,CE=3﹣x,∵四邊形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC=,又∵AE=AB﹣BE=3﹣1=2,則菱形的面積是:AE?BC=2.∴陰影部分的面積=S菱形AECF=cm2.故選:D.【考點(diǎn)】本題考查菱形的性質(zhì)、勾股定理、含30°直角三角形的性質(zhì)等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.2、C【解析】【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點(diǎn)之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點(diǎn)A、C之間的最短距離為線段AC的長(zhǎng).在Rt△ADC中,∠ADC=90°,CD=AB=3,AD為底面半圓弧長(zhǎng),AD=π,∴AC=,故選C.【考點(diǎn)】本題考查了平面展開-最短路徑問題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開,并利用勾股定理解答.3、C【解析】【詳解】解:如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,即:a2+b2=13,∴2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C.4、B【解析】【分析】把圓柱沿著點(diǎn)A所在母線展開,把圓柱上最短距離轉(zhuǎn)化為將軍飲馬河型最短問題求解即可.【詳解】把圓柱沿著點(diǎn)A所在母線展開,如圖所示,作點(diǎn)A的對(duì)稱點(diǎn)B,連接PB,則PB為所求,根據(jù)題意,得PC=8,BC=6,根據(jù)勾股定理,得PB=10,故選B.【考點(diǎn)】本題考查了圓柱上的最短問題,利用圓柱展開,把問題轉(zhuǎn)化為將軍飲馬河問題,靈活使用勾股定理是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)正方形的面積可以得到BC2=8,AC2=17,然后根據(jù)勾股定理即可得到AB2,從而可以求得AB的值.【詳解】解:S1=8cm2,S2=17cm2,∴BC2=8,AC2=17,∵∠ACB=90°,∴AB2=BC2+AC2,即AB2=8+17=25,∴AB=5cm,故選:D.【考點(diǎn)】本題考查正方形的面積、勾股定理,解答本題的關(guān)鍵是明確正方形的面積是邊長(zhǎng)的平方.6、D【解析】【分析】先畫出三角形,根據(jù)勾股定理和題目設(shè)好的未知數(shù)列出方程.【詳解】解:如圖,根據(jù)題意,,,設(shè)折斷處離地面的高度是x尺,即,根據(jù)勾股定理,,即.故選:D.【考點(diǎn)】本題考查勾股定理的方程思想,解題的關(guān)鍵是根據(jù)題意利用勾股定理列出方程.7、C【解析】【分析】首先設(shè)蘆葦長(zhǎng)x尺,則水深為(x?1)尺,根據(jù)勾股定理可得方程(x?1)2+52=x2.【詳解】解:設(shè)蘆葦長(zhǎng)x尺,由題意得:(x?1)2+52=x2,即x2﹣52=(x﹣1)2故選:C.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,解題的關(guān)鍵是讀懂題意,從題中抽象出勾股定理這一數(shù)學(xué)模型.二、填空題1、5【解析】【分析】根據(jù)題意直接利用勾股定理得出杯子內(nèi)的筷子長(zhǎng)度,進(jìn)而得出答案.【詳解】解:由題意可得:杯子內(nèi)的筷子長(zhǎng)度為:=15,則木筷露在杯子外面的部分至少有:20?15=5(cm).故答案為5.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,正確得出杯子內(nèi)筷子的長(zhǎng)是解決問題的關(guān)鍵.2、11,60,61【解析】【分析】由所給勾股數(shù)發(fā)現(xiàn)第一個(gè)數(shù)是奇數(shù),且逐步遞增2,知第5組第一個(gè)數(shù)是11,第二、第三個(gè)數(shù)相差為1,設(shè)第二個(gè)數(shù)為x,則第三個(gè)數(shù)為,由勾股定理得:,計(jì)算求解即可.【詳解】解:由所給勾股數(shù)發(fā)現(xiàn)第一個(gè)數(shù)是奇數(shù),且逐步遞增2,∴知第5組第一個(gè)數(shù)是11,第二、第三個(gè)數(shù)相差為1,設(shè)第二個(gè)數(shù)為x,則第三個(gè)數(shù)為,由勾股定理得:,解得x=60,∴第5組數(shù)是:11、60、61故答案為:11、60、61.【考點(diǎn)】本題考查了數(shù)字類規(guī)律,勾股定理等知識(shí).解題的關(guān)鍵在于推導(dǎo)規(guī)律.3、【解析】【分析】設(shè)甲、乙二人出發(fā)后相遇的時(shí)間為x,然后利用勾股定理列出方程即可.【詳解】解:設(shè)經(jīng)x秒二人在C處相遇,這時(shí)乙共行AC=3x,甲共行AB+BC=7x,∵AB=10,∴BC=7x-10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x-10)2=(3x)2+102,故答案是:(7x-10)2=(3x)2+102.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是從實(shí)際問題中抽象出直角三角形.4、##【解析】【分析】證明△AMC≌△BNC,可得,再根據(jù)三角形三邊關(guān)系得出當(dāng)點(diǎn)N落在線段AB上時(shí),最小,求出最小值即可.【詳解】解:∵線段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到線段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值為;故答案為:.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理,解題關(guān)鍵是證明三角形全等,得出,根據(jù)三角形三邊關(guān)系取得最小值.5、
24
0【解析】【分析】先證明從而可得再利用圖形的面積關(guān)系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個(gè)正方形,兩式相減可得:而故答案為:24,0【考點(diǎn)】本題考查的是正方形的性質(zhì),全等三角形的判定與性質(zhì),圖形面積之間的關(guān)系,證明是解本題的關(guān)鍵.6、.【解析】【分析】首先根據(jù)勾股定理求出BC的長(zhǎng),根據(jù)折疊性質(zhì),可得=AB=3,=BE,∠B=∠=90°,然后設(shè)BE=,根據(jù)勾股定理,列出,求解即可.【詳解】解:∵∠ABC=90°,AB=3,AC=5,在Rt△ABC中,,將△ABC沿AE折疊,∴=AB=3,=BE,∠B=∠=90°,則,設(shè)BE=,EC=4-,,在Rt△中,由勾股定理得:,即,解得,∴BE=.故答案為.【考點(diǎn)】本題主要考查了翻折變換的性質(zhì)及勾股定理的應(yīng)用;解題的關(guān)鍵是準(zhǔn)確找出圖形中隱含的相等關(guān)系.7、45°##45度【解析】【分析】取正方形網(wǎng)格中格點(diǎn)Q,連接PQ和BQ,證明∠AQB=90°,由勾股定理計(jì)算PQ=QB,進(jìn)而得到△QPB為等腰直角三角形,∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°即可求解.【詳解】解:取正方形網(wǎng)格中格點(diǎn)Q,連接PQ和BQ,如下圖所示:∴AE=PF,PE=QF,∠AEP=∠PFQ=90°,∴△APE≌△PQF(SAS),∴∠PAB=∠QPF,∵PF∥BE,∴∠PBA=∠BPF,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB,又QA2=22+42=20,QB2=22+12=5,AB2=52=25,∴QA2+QB2=20+5=25=AB2,∴△QAB為直角三角形,∠AQB=90°,∵PQ2=22+12=5=QB2,∴△PQB為等腰直角三角形,∴∠QPB=∠QBP=(180°-90°)÷2=45°,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°,故答案為:45°.【考點(diǎn)】本題考查了勾股定理及逆定理、三角形全等的判定等,熟練掌握勾股定理及逆定理是解決本類題的關(guān)鍵.8、8【解析】【分析】作交的延長(zhǎng)于點(diǎn),在中,,在中,,根據(jù)列出方程即可求解.【詳解】如圖,作交的延長(zhǎng)于點(diǎn),則即為BC邊上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案為:8.【考點(diǎn)】本題考查了勾股定理,掌握三角形的高,直角三角形是解題的關(guān)鍵.三、解答題1、(1)⊙M與x軸相切,理由見解析(2)6(3)【解析】【分析】(1)連接CM,證CM⊥x即可得出結(jié)論;(2)過點(diǎn)M作MN⊥AB于N,證四邊形OCMN是矩形,得MN=OC,ON=OM=5,設(shè)AN=x,則OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN值,再由垂徑定理得AB=2AN即可求解;(3)連接BC,CM,過點(diǎn)D作DP⊥CM于P,得直角三角形BCD,由(2)知:AB=6,OA=2,OC=4,所以O(shè)B=8,C(4,0),在Rt△BOC中,∠BOC=90°,由勾股定理,求得BC=,在Rt△BCD中,∠BCD=90°,由勾股定理,即可求得CD,在Rt△CPD和在Rt△MPD中,由勾股定理,求得CP=2,PD=4,從而得出點(diǎn)D坐標(biāo),然后用待定系數(shù)法求出直線CD解析式即可.(1)解:⊙M與x軸相切,理由如下:連接CM,如圖,∵M(jìn)C=MA,∴∠MCA=∠MAC,∵AC平分∠OAM,∴∠MAC=∠OAC,∴∠MCA=∠OAC,∵∠OAC+∠ACO=90°,∴∠MCO=∠MCA+∠ACO=∠OAC+∠ACO=90°,∵M(jìn)C是⊙M的半徑,點(diǎn)C在x軸上,∴⊙M與x軸相切;(2)解:如圖,過點(diǎn)M作MN⊥AB于N,由(1)知,∠MCO=90°,∵M(jìn)N⊥AB于N,∴∠MNO=90°,AB=2AN,∵∠CON=90°,∴∠CMN=90°,∴四邊形OCMN是矩形,∴MN=OC,ON=CM=5,∵OA+OC=6,設(shè)AN=x,
∴OA=5-x,MN=OC=6-(5-x)=1+x,在Rt△MNA中,∠MNA=90°,由勾股定理,得x2+(1+x)2=52,解得:x1=3,x2=-4(不符合題意,舍去),∴AN=3,∴AB=2AN=6;(3)解:如圖,連接BC,CM,過點(diǎn)D作DP⊥CM于P,由(2)知:AB=6,OA=2,OC=4,∴OB=8,C(4,0)在Rt△BOC中,∠BOC=90°,由勾股定理,得BC=,∵BD是⊙M的直徑,∴∠BCD=90°,BD=10,在Rt△BCD中,∠BCD=90°,由勾股定理,得CD=,即CD2=20,在Rt△CPD中,由勾股定理,得PD2=CD2-CP2=20-CP2,在Rt△MPD中,由勾股定理,得PD2=MD2-MP2=MD2-(MC-CP)2=52-(5-CP)2=10CP-CP2,∴20-CP2=10CP-CP2,
∴CP=2,∴PD2=20-CP2=20-4=16,∴PD=4,即D點(diǎn)橫坐標(biāo)為OC+PD=4+4=8,∴D(8,-2),設(shè)直線CD解析式為y=kx+b,把C(4,0),D(8,-2)代入,得,解得:,∴直線CD的解析式為:.【考點(diǎn)】本題考查直線與圓相切的判定,勾股定理,圓周角定理的推論,垂徑定理,待定系數(shù)法求一次函數(shù)解析式,熟練掌握直線與圓相切的判定、待定系數(shù)法求一次函數(shù)解析式的方法是解題的關(guān)鍵.2、216平方米【解析】【分析】連接AC,根據(jù)勾股定理計(jì)算AC,根據(jù)勾股定理的逆定理判定三角形ABC是直角三角形,根據(jù)面積公式計(jì)算即可.【詳解】連接AC,∵AD=12,CD=9,∠ADC=90°,∴AC==15,∵AB=39,BC=36,AC=15∴,∴∠ACB=90°,∴這塊空地的面積為:==216(平方米),故這塊草坪的面積216平方米.【考點(diǎn)】本題考查了勾股定理及其逆定理,熟練掌握定理并靈活運(yùn)用是解題的關(guān)鍵.3、它至少5.2秒能趕回巢中.【解析】【分析】過點(diǎn)作于點(diǎn).求出AF,EF,再根據(jù)勾股定理求出AE,從而求出時(shí)間.【詳解】解:如圖所示,米,米,米,米.過點(diǎn)作于點(diǎn).在中,米,米,所以.所以喜鵲離巢的距離米.喜鵲趕回巢所需的時(shí)間為(秒).即它至少5.2秒能趕回巢中.【考點(diǎn)】考核知識(shí)點(diǎn):勾股定理和逆定理運(yùn)用.構(gòu)造直角三角形是解題關(guān)鍵.4、【解析】【分析】設(shè)秋千的繩索長(zhǎng)為,則,,利用勾股定理得,再解方程即可得出答案.【詳解】解:設(shè)秋千的繩索長(zhǎng)為,則,,在中,,即,解得,答:繩索的長(zhǎng)度是.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,關(guān)鍵是正確理解題意,表示出AC、AB的長(zhǎng),掌握直角三角形中兩直角邊的平方和等于斜邊的平方.5、(1)ABD,ACE,;(2)BD的長(zhǎng)為;(3)+4.【解析】【分析】(1)根據(jù)SAS可證△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的長(zhǎng)度;(2)作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,連接CE,求出BH,HC即BC的長(zhǎng)度,再利用勾股定理即可求出CE的長(zhǎng)度,由(1)知BD=CE,據(jù)此得解;(3)作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,延長(zhǎng)EB至F,使BF=EB,連接AF交BN于C',連接EC',此時(shí)BD+AC'有最小值即為AF,此時(shí)△ABD周長(zhǎng)=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等邊三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵AB=4,∠MBN=30°,∴AC=2,∴BC=,∴BD=CE=,故答案為:ABD,ACE,;(2)解:如下圖,作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,連接CE,∵AB=4,∠MAN=30°,∴AH=2,BH=,∵AC=,∴HC=,∴BC=BH+HC=+=,∴CE=,由(1)可知BD=CE,∴此時(shí)BD的長(zhǎng)為;(3)解:如圖,以AB為邊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB 48003-2026郵政業(yè)安全生產(chǎn)操作規(guī)范
- 學(xué)校夜間值班保衛(wèi)制度
- 高難度物理學(xué)題目及答案
- 養(yǎng)老院膳食營(yíng)養(yǎng)制度
- 養(yǎng)老院內(nèi)部保衛(wèi)制度
- 大足駕校文盲考試題目及答案
- 現(xiàn)代詩兩首題目及答案
- 聚眾賭博面試題目及答案
- 辦公室員工培訓(xùn)與考核制度
- 閉環(huán)消缺制度
- 《文獻(xiàn)檢索與科技論文寫作入門》課件(共八章)
- 2025至2030鑄鐵產(chǎn)業(yè)行業(yè)市場(chǎng)深度研究及發(fā)展前景投資可行性分析報(bào)告
- 機(jī)電設(shè)備安裝工程中電梯系統(tǒng)全生命周期質(zhì)量管控體系
- 碎石樁施工技術(shù)
- 2025年政府采購(gòu)和招標(biāo)法考試試題及答案
- 2025中考九年級(jí)語文《標(biāo)點(diǎn)符號(hào)》復(fù)習(xí)練習(xí)題
- 智能化建筑機(jī)器人施工方案和技術(shù)措施
- 征兵體檢外科標(biāo)準(zhǔn)
- 4輸變電工程施工質(zhì)量驗(yàn)收統(tǒng)一表式(電纜工程電氣專業(yè))-2024年版
- 傳統(tǒng)元素與現(xiàn)代設(shè)計(jì)建筑融合創(chuàng)新
- 醫(yī)院信息安全保密協(xié)議5篇
評(píng)論
0/150
提交評(píng)論