考點解析-江西省貴溪市中考數(shù)學(xué)真題分類(勾股定理)匯編重點解析試卷(解析版)_第1頁
考點解析-江西省貴溪市中考數(shù)學(xué)真題分類(勾股定理)匯編重點解析試卷(解析版)_第2頁
考點解析-江西省貴溪市中考數(shù)學(xué)真題分類(勾股定理)匯編重點解析試卷(解析版)_第3頁
考點解析-江西省貴溪市中考數(shù)學(xué)真題分類(勾股定理)匯編重點解析試卷(解析版)_第4頁
考點解析-江西省貴溪市中考數(shù)學(xué)真題分類(勾股定理)匯編重點解析試卷(解析版)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江西省貴溪市中考數(shù)學(xué)真題分類(勾股定理)匯編重點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,有一塊直角三角形紙片,∠C=90°,AC=8,BC=6,將斜邊AB翻折,使點B落在直角邊AC的延長線上的點E處,折痕為AD,則BD的長為(

)A.2 B. C. D.42、如圖,已知點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.803、如圖,在矩形ABCD中,,將△ABD沿對角線BD對折,得到△EBD,DE與BC交于F,,則(

)A. B.3 C. D.64、下列四組數(shù)中,是勾股數(shù)的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,5、如圖,在△ABC中,AB=6,AC=9,AD⊥BC于D,M為AD上任一點,則MC2-MB2等于(

)A.29 B.32 C.36 D.456、兩只小鼴鼠在地下打洞,一只朝正北方向挖,每分鐘挖8cm,另一只朝正東方向挖,每分鐘挖6cm,10分鐘之后兩只小鼴鼠相距(

)A.50cm B.120cm C.140cm D.100cm7、下面圖形能夠驗證勾股定理的有()個A.4個 B.3個 C.2個 D.1個第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在△ABC中,AB=10,BC=9,AC=17,則BC邊上的高為_______.2、如圖,在的正方形網(wǎng)格中,每個小正方形的頂點稱為格點,點、、均在格點上,則______.3、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風(fēng)吹來,蘆葦?shù)捻敹薉恰好到達(dá)水面的C處,且C到BD的距離AC=6米,水的深度(AB)為________米4、如圖所示,數(shù)軸上點A所表示的數(shù)為_______.5、已知,在中,,,,則的面積為__.6、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長為_______7、如圖,在長方形ABCD中,AB=8,AD=10,點E為BC上一點,將△ABE沿AE折疊,點B恰好落在線段DE上的點F處,則BE的長為______.8、如圖,在的網(wǎng)格中每個小正方形的邊長都為1,的頂點、、都在格點上,點為邊的中點,則線段的長為________.三、解答題(7小題,每小題10分,共計70分)1、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.2、在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個取水點A,B,其中AB=AC,由于種種原因,由C到A的路現(xiàn)在已經(jīng)不通了,某村為方便村民取水決定在河邊新建一個取水點H(A,H,B在一條直線上),并新修一條路CH,測得CB=3千米,CH=2.4千米,HB=1.8千米.(1)問CH是不是從村莊C到河邊的最近路,請通過計算加以說明;(2)求原來的路線AC的長.3、如圖是“弦圖”的示意圖,“弦圖”最早是由三國時期的數(shù)學(xué)家趙爽在為《周髀算經(jīng)》作注時給出的,它標(biāo)志著中國古代的數(shù)學(xué)成就.它由4個全等的直角三角形與一個小正方形組成,恰好拼成一個大正方形,每個直角三角形的兩條直角邊分別為a、b,斜邊為c.請你運(yùn)用此圖形證明勾股定理:a2+b2=c2.4、如圖,某商家想在商場大樓上懸掛一塊廣告牌,廣告牌高.根據(jù)商場規(guī)定廣告牌最高點不得高于地面20m,經(jīng)測量,測角儀支架高,在F處測得廣告牌底部點B的仰角為30°,在E處測得標(biāo)語牌頂部點A的仰角為45°,,請計算說明,商家這樣放廣告牌是否符合規(guī)定?(圖中點A,B,C,D,E,F(xiàn),G,H在同一平面內(nèi))5、如圖,AD是△ABC的中線,DE⊥AC于點E,DF是△ABD的中線,且CE=2,DE=4,AE=8.(1)求證:;(2)求DF的長.6、如圖所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運(yùn)動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運(yùn)動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為ts.(1)出發(fā)3s后,求PQ的長;(2)當(dāng)點Q在邊BC上運(yùn)動時,出發(fā)多久后,△PQB能形成等腰三角形?(3)當(dāng)點Q在邊CA上運(yùn)動時,求能使△BCQ成為等腰三角形的運(yùn)動時間.7、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.-參考答案-一、單選題1、B【解析】【分析】根據(jù)勾股定理求出AB的長,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD.【詳解】解:∵∠C=90°,AC=8,BC=6,∴,由翻折得AE=AB=10,DE=BD,∴CE=AE-AC=10-8=2,在Rt△CED中,,∴,解得BD=,故選:B.【考點】此題考查了勾股定理的應(yīng)用,翻折的性質(zhì),熟記勾股定理的計算公式是解題的關(guān)鍵.2、C【解析】【詳解】解:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選:C.3、A【解析】【分析】根據(jù)折疊的性質(zhì),可知BF=DF=-EF,在Rt中,由勾股定理得:,由此即可求得EF值.【詳解】解:∵,,∴AD=,,由折疊可知,AB=BE=6,AD=ED=,,,∵,∴∠BDF=∠DBF∴BF=DF=-EF,∴在Rt中,由勾股定理得:,∴,解得:EF=,故選:A.【考點】本題主要考查的是勾股定理的應(yīng)用,靈活利用折疊進(jìn)行發(fā)掘條件是解題的關(guān)鍵.4、A【解析】【分析】欲判斷是否為勾股數(shù),必須根據(jù)勾股數(shù)是正整數(shù),同時還需驗證兩小邊的平方和是否等于最長邊的平方.【詳解】解:A、52+122=132,都是正整數(shù),是勾股數(shù),故此選項符合題意;B、42+52≠62,不是勾股數(shù),故此選項不合題意;C、22+32≠42,不是勾股數(shù),故此選項不合題意;D、,不是正整數(shù),不是勾股數(shù),故此選項不合題意;故選:A.【考點】此題主要考查了勾股數(shù),解答此題要用到勾股數(shù)組的定義,如果a,b,c為正整數(shù),且滿足a2+b2=c2,那么,a、b、c叫做一組勾股數(shù).5、D【解析】【分析】在Rt△ABD及Rt△ADC中可分別表示出BD2及CD2,在Rt△BDM及Rt△CDM中分別將BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出結(jié)果.【詳解】解:在Rt△ABD和Rt△ADC中,BD2=AB2?AD2,CD2=AC2?AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2?AD2+MD2,MC2=CD2+MD2=AC2?AD2+MD2,∴MC2?MB2=(AC2?AD2+MD2)?(AB2?AD2+MD2)=AC2?AB2=45.故選:D.【考點】本題考查了勾股定理的知識,題目有一定的技巧性,比較新穎,解答本題需要認(rèn)真觀察,分別兩次運(yùn)用勾股定理求出MC2和MB2是本題的難點,重點還是在于勾股定理的熟練掌握.6、D【解析】【分析】畫出圖形,利用勾股定理即可求解.【詳解】解:如圖,cm,cm,∴在中,cm,故選:D【考點】本題考查了勾股定理的應(yīng)用,理解題意,畫出圖形是解題的關(guān)鍵.7、A【解析】【分析】分別計算圖形的面積進(jìn)行證明即可.【詳解】解:A、由可得,故該項的圖形能夠驗證勾股定理;B、由可得,故該項的圖形能夠驗證勾股定理;C、由可得,故該項的圖形能夠驗證勾股定理;D、由可得,故該項的圖形能夠驗證勾股定理;故選:A.【考點】此題考查了圖形與勾股定理的推導(dǎo),熟記勾股定理的計算公式及各種圖形面積的計算方法是解題的關(guān)鍵.二、填空題1、8【解析】【分析】作交的延長于點,在中,,在中,,根據(jù)列出方程即可求解.【詳解】如圖,作交的延長于點,則即為BC邊上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案為:8.【考點】本題考查了勾股定理,掌握三角形的高,直角三角形是解題的關(guān)鍵.2、45°##45度【解析】【分析】取正方形網(wǎng)格中格點Q,連接PQ和BQ,證明∠AQB=90°,由勾股定理計算PQ=QB,進(jìn)而得到△QPB為等腰直角三角形,∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°即可求解.【詳解】解:取正方形網(wǎng)格中格點Q,連接PQ和BQ,如下圖所示:∴AE=PF,PE=QF,∠AEP=∠PFQ=90°,∴△APE≌△PQF(SAS),∴∠PAB=∠QPF,∵PF∥BE,∴∠PBA=∠BPF,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB,又QA2=22+42=20,QB2=22+12=5,AB2=52=25,∴QA2+QB2=20+5=25=AB2,∴△QAB為直角三角形,∠AQB=90°,∵PQ2=22+12=5=QB2,∴△PQB為等腰直角三角形,∴∠QPB=∠QBP=(180°-90°)÷2=45°,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°,故答案為:45°.【考點】本題考查了勾股定理及逆定理、三角形全等的判定等,熟練掌握勾股定理及逆定理是解決本類題的關(guān)鍵.3、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點】本題考查了勾股定理的應(yīng)用,從現(xiàn)實圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.4、【解析】【分析】根據(jù)數(shù)軸上點的特點和相關(guān)線段的長,結(jié)合勾股定理求出斜邊長,即可求出-1和A之間的線段的長,即可知A所表示的數(shù).【詳解】圖中直角三角形的兩直角邊為1,2,所以斜邊長為,那么-1和A之間的距離為,那么數(shù)軸上點A所表示的數(shù)為:.故答案為:.【考點】本題考查實數(shù)與數(shù)軸之間的對應(yīng)關(guān)系以及勾股定理,利用勾股定理求出直角三角形的斜邊的長是解答本題的關(guān)鍵.5、2或14#14或2【解析】【分析】過點B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時,②△ABC是銳角三角形時,分別求出AC的長,即可求解.【詳解】解:過點作邊的高,中,,,,在中,,,①是鈍角三角形時,,;②是銳角三角形時,,,故答案為:2或14.【考點】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類討論思想.6、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長,進(jìn)而可得出BD的長,根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長.【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.7、【解析】【分析】設(shè),則,由折疊的性質(zhì)可知,,在中利用勾股定理表示出,在中,利用勾股定理列方程求解.【詳解】解:設(shè),則,由折疊的性質(zhì)可知,,,.在中,,.在中,,即,解得.的長為.【考點】本題考查了勾股定理的應(yīng)用,折疊的性質(zhì),熟練掌握勾股定理是解題的關(guān)鍵.8、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質(zhì)即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點O為AB邊的中點,∴CO=AB=2.5,故答案為:2.5.【考點】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質(zhì)等知識,熟練掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.三、解答題1、84.【解析】【詳解】解:作AD⊥BC于D,如圖所示:設(shè)BD=x,則.

在Rt△ABD中,由勾股定理得:,在Rt△ACD中,由勾股定理得:,∴,

解之得:.

∴.

∴.2、(1)是,理由見解析;(2)2.5米.【解析】【分析】(1)先根據(jù)勾股定理逆定理證得Rt△CHB是直角三角形,然后根據(jù)點到直線的距離中,垂線段最短即可解答;(2)設(shè)AC=AB=x,則AH=x-1.8,在Rt△ACH中,根據(jù)勾股定理列方程求得x即可.【詳解】(1)∵,即,∴Rt△CHB是直角三角形,即CH⊥BH,∴CH是從村莊C到河邊的最近路(點到直線的距離中,垂線段最短);(2)設(shè)AC=AB=x,則AH=x-1.8,∵在Rt△ACH,∴,即,解得x=2.5,∴原來的路線AC的長為2.5米.【考點】本題主要考查了勾股定理的應(yīng)用,靈活應(yīng)用勾股定理的逆定理和定理是解答本題的關(guān)鍵.3、見解析【解析】【分析】根據(jù)大正方形的面積=小正方形的面積+4個直角三角形的面積證明即可【詳解】解:由題意得大正方形面積,小正方形面積,4個小直角三角形的面積,∵大正方形的面積=小正方形的面積+4個直角三角形的面積,∴.【考點】本題主要考查了勾股定理的證明,解題的關(guān)鍵在于能夠根據(jù)題意知曉大正方形的面積=小正方形的面積+4個直角三角形的面積.4、,不符合規(guī)定【解析】【分析】根據(jù)勾股定理即可求解.【詳解】解:設(shè)且解得:商家這樣放廣告牌不符合規(guī)定.【考點】本題考查了勾股定理、一元一方程等內(nèi)容,解決問題的關(guān)鍵在于理解題意,找到等量關(guān)系,列出方程.5、(1)見解析(2)DF的長為5.【解析】【分析】(1)利用勾股定理的逆定理,證明△ADC是直角三角形,即可得出∠ADC是直角;(2)根據(jù)三角形的中線的定義以及直角三角形的性質(zhì)解答即可.(1)證明:∵DE⊥AC于點E,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=82+42=80,同理:CD2=20,∴AD2+CD2=80+20=100,∵AC=AE+CE=8+2=10,∴AC2=100,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC=90°;(2)解:∵AD是△ABC的中線,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=10,在Rt△ADB中,∠ADB=90°,∵點F是邊AB的中點,∴DF=AB=5.∴DF的長為5.【考點】本題主要考查了直角三角形的性質(zhì)與判定,垂直平分線的判定和的性質(zhì),熟記勾股定理與逆定理是解答本題的關(guān)鍵.6、(1)PQ=cm(2)出發(fā)秒后△PQB能形成等腰三角形(3)當(dāng)t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.【解析】【分析】(1)可求得AP和BQ,則可求得BP,由勾股定理即可得出結(jié)論;(2)用t可分別表示出BP和BQ,根據(jù)等腰三角形的性質(zhì)可得到BP=BQ,可得到關(guān)于t的方程,可求得t;(3)用t分別表示出BQ和CQ,利用等腰三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論