青島飛洋職業(yè)技術(shù)學院《色彩構(gòu)成》2024-2025學年第一學期期末試卷_第1頁
青島飛洋職業(yè)技術(shù)學院《色彩構(gòu)成》2024-2025學年第一學期期末試卷_第2頁
青島飛洋職業(yè)技術(shù)學院《色彩構(gòu)成》2024-2025學年第一學期期末試卷_第3頁
青島飛洋職業(yè)技術(shù)學院《色彩構(gòu)成》2024-2025學年第一學期期末試卷_第4頁
青島飛洋職業(yè)技術(shù)學院《色彩構(gòu)成》2024-2025學年第一學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共2頁青島飛洋職業(yè)技術(shù)學院《色彩構(gòu)成》2024-2025學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的車牌識別任務(wù)中,需要從車輛圖像中準確提取車牌號碼。假設(shè)車牌存在傾斜、變形和光照不均等問題。以下哪種車牌識別方法在應(yīng)對這些挑戰(zhàn)時表現(xiàn)更為出色?()A.基于字符分割的車牌識別B.基于模板匹配的車牌識別C.基于深度學習的車牌識別D.基于特征提取的車牌識別2、計算機視覺中的特征提取是非常關(guān)鍵的步驟。假設(shè)要從一組圖像中提取具有代表性的特征,以下關(guān)于特征提取方法的描述,正確的是:()A.手工設(shè)計的特征,如SIFT和HOG,在任何情況下都比深度學習自動學習的特征更有效B.深度學習中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學習到圖像的多層次特征,具有很強的表達能力C.特征提取的結(jié)果對后續(xù)的圖像分類和目標檢測任務(wù)沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要3、在目標檢測中,YOLO(YouOnlyLookOnce)算法的特點是()A.檢測速度快B.檢測精度高C.適用于小目標檢測D.對遮擋不敏感4、視頻理解是計算機視覺中的一個具有挑戰(zhàn)性的任務(wù)。以下關(guān)于視頻理解的敘述,不準確的是()A.視頻理解不僅需要分析每一幀圖像的內(nèi)容,還需要考慮幀之間的時間關(guān)系B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長短期記憶網(wǎng)絡(luò)(LSTM)在處理視頻序列數(shù)據(jù)時具有優(yōu)勢C.視頻理解在視頻監(jiān)控、行為分析和內(nèi)容推薦等方面具有廣泛的應(yīng)用前景D.目前的視頻理解技術(shù)已經(jīng)能夠完全理解復(fù)雜場景下的視頻內(nèi)容,不存在任何挑戰(zhàn)5、在計算機視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴重噪聲污染的圖像中的噪聲,同時盡可能保留圖像的細節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學習的圖像去噪模型,如DnCNND.不進行任何去噪處理,保留原始噪聲圖像6、計算機視覺中的圖像風格遷移是一項有趣的任務(wù)。假設(shè)要將一幅油畫的風格應(yīng)用到一張照片上,以下關(guān)于模型訓(xùn)練的要點,哪一項是不正確的?()A.學習油畫和照片的特征表示,找到風格和內(nèi)容的分離方式B.只關(guān)注風格的遷移,不考慮照片原始內(nèi)容的保留C.采用對抗訓(xùn)練,使生成的圖像在風格和內(nèi)容上達到平衡D.調(diào)整模型參數(shù),控制風格遷移的強度和效果7、計算機視覺中的行人重識別是在不同攝像頭拍攝的圖像或視頻中識別出特定的行人。以下關(guān)于行人重識別的敘述,不正確的是()A.行人重識別需要提取具有判別性的行人特征,克服視角、光照和姿態(tài)的變化B.深度學習方法在行人重識別任務(wù)中取得了顯著的性能提升C.行人重識別在智能安防、視頻監(jiān)控和人員追蹤等領(lǐng)域有重要的應(yīng)用D.行人重識別技術(shù)已經(jīng)能夠在大規(guī)模數(shù)據(jù)集上達到100%的準確率8、在計算機視覺的應(yīng)用于工業(yè)檢測中,需要檢測產(chǎn)品表面的缺陷和瑕疵。假設(shè)我們要檢測手機屏幕上的劃痕和亮點,以下哪種方法能夠?qū)崿F(xiàn)快速、準確的缺陷檢測,并且適應(yīng)不同的產(chǎn)品批次和生產(chǎn)環(huán)境?()A.基于機器視覺的傳統(tǒng)檢測方法,結(jié)合閾值和形態(tài)學操作B.基于深度學習的目標檢測算法,針對缺陷進行訓(xùn)練C.基于紋理分析和模式識別的方法D.基于光學原理和物理模型的檢測方法9、計算機視覺中的場景理解是理解圖像或視頻中的場景內(nèi)容和語義信息。假設(shè)要理解一張城市街道的圖像,以下關(guān)于場景理解方法的描述,哪一項是不正確的?()A.可以通過對象檢測、語義分割和場景分類等任務(wù)來實現(xiàn)場景理解B.結(jié)合上下文信息和先驗知識能夠提高場景理解的準確性C.深度學習模型能夠?qū)W習場景中的全局特征和關(guān)系,實現(xiàn)對場景的深入理解D.場景理解可以在沒有任何先驗知識和上下文信息的情況下,準確地推斷出場景的語義10、計算機視覺在智能零售中的應(yīng)用可以改善購物體驗和提高運營效率。假設(shè)一個超市需要通過計算機視覺實現(xiàn)自動結(jié)賬和庫存管理。以下關(guān)于計算機視覺在智能零售中的描述,哪一項是不準確的?()A.可以通過商品識別技術(shù)自動識別顧客購買的商品,實現(xiàn)快速結(jié)賬B.能夠?qū)崟r監(jiān)測貨架上商品的庫存水平,及時提醒補貨C.計算機視覺系統(tǒng)能夠準確識別所有商品的包裝和標簽,不受商品擺放方式和遮擋的影響D.可以分析顧客在店內(nèi)的行為和偏好,為營銷策略提供數(shù)據(jù)支持11、計算機視覺中的醫(yī)學圖像分析對于疾病的診斷和治療具有重要意義。以下關(guān)于醫(yī)學圖像分析的描述,不準確的是()A.可以對X光、CT、MRI等醫(yī)學圖像進行病灶檢測、器官分割和疾病分類B.深度學習技術(shù)在醫(yī)學圖像分析中取得了顯著的成果,但也面臨數(shù)據(jù)標注困難和模型泛化能力不足的問題C.醫(yī)學圖像分析需要遵循嚴格的醫(yī)學標準和倫理規(guī)范,確保結(jié)果的準確性和可靠性D.醫(yī)學圖像分析完全依賴于計算機視覺技術(shù),醫(yī)生的經(jīng)驗和專業(yè)知識不再重要12、在計算機視覺的表情識別任務(wù)中,判斷圖像或視頻中人物的表情。假設(shè)要開發(fā)一個用于在線教育的表情識別系統(tǒng),以下關(guān)于表情識別方法的描述,哪一項是不正確的?()A.可以通過分析面部肌肉的運動和特征點的變化來識別表情B.深度學習模型能夠?qū)W習不同表情的模式和特征,實現(xiàn)準確的表情分類C.表情識別系統(tǒng)需要考慮光照、頭部姿態(tài)和遮擋等因素的影響D.表情識別可以準確地識別出所有細微和復(fù)雜的表情,不受個體差異和文化背景的影響13、在計算機視覺中,以下哪種技術(shù)常用于圖像的超分辨率重建的上采樣方法?()A.反卷積B.亞像素卷積C.最近鄰插值D.以上都是14、在計算機視覺中,目標檢測是一項重要的任務(wù)。假設(shè)要開發(fā)一個能夠在城市交通場景中檢測車輛和行人的系統(tǒng)。以下關(guān)于目標檢測算法的選擇,哪一項是需要重點考慮的因素?()A.算法的檢測速度,以滿足實時性要求B.算法在小目標檢測上的性能,因為車輛和行人在圖像中可能較小C.算法的模型復(fù)雜度,越復(fù)雜的模型效果越好D.算法是否開源,開源的算法更易于使用15、圖像去模糊是計算機視覺中的一個難題。假設(shè)一張圖像由于相機抖動而產(chǎn)生模糊,以下哪種去模糊方法可能需要對模糊核有較為準確的估計?()A.基于深度學習的去模糊方法B.盲去卷積方法C.維納濾波去模糊方法D.均值濾波去模糊方法16、在計算機視覺的車牌識別任務(wù)中,假設(shè)要從不同角度和光照條件下拍攝的車輛圖像中準確識別出車牌號碼。以下哪種技術(shù)可能有助于提高識別準確率?()A.字符分割和單獨識別B.利用深度學習模型進行端到端的識別C.只關(guān)注車牌的顏色特征D.隨機猜測車牌號碼17、在計算機視覺的圖像語義分割任務(wù)中,假設(shè)要處理具有多尺度特征的圖像,例如同時包含大物體和小物體的場景。以下關(guān)于處理多尺度特征的方法描述,正確的是:()A.使用單一尺度的特征提取網(wǎng)絡(luò)可以應(yīng)對多尺度問題,通過調(diào)整網(wǎng)絡(luò)參數(shù)即可B.采用多尺度輸入圖像,分別進行處理后再融合結(jié)果,能夠有效解決多尺度問題,但計算量大C.空洞卷積在處理多尺度特征時會引入大量的噪聲,降低分割精度D.圖像語義分割中多尺度問題無法解決,只能盡量避免處理這類圖像18、人臉識別是計算機視覺的一個重要應(yīng)用。假設(shè)一個公司使用人臉識別系統(tǒng)進行員工考勤。以下關(guān)于人臉識別技術(shù)的描述,哪一項是錯誤的?()A.它可以通過提取面部特征,如眼睛、鼻子和嘴巴的形狀和位置,來進行身份識別B.能夠適應(yīng)不同的表情、姿態(tài)和光照變化,保持較高的識別準確率C.人臉識別系統(tǒng)的安全性極高,不存在被欺騙或誤識別的可能性D.深度學習模型在人臉識別中表現(xiàn)出色,大大提高了識別性能19、在計算機視覺的行人重識別任務(wù)中,即在不同攝像頭拍攝的圖像中識別出同一個行人,假設(shè)行人的姿態(tài)和服裝發(fā)生了較大變化,以下哪種特征可能具有更強的魯棒性?()A.基于全局特征的描述B.基于局部特征的描述C.基于顏色特征的描述D.基于形狀特征的描述20、在計算機視覺的圖像增強處理中,目的是改善圖像的質(zhì)量和可讀性。假設(shè)我們要對一張低光照條件下拍攝的圖像進行增強,以下關(guān)于圖像增強方法的描述,哪一項是不正確的?()A.直方圖均衡化可以通過調(diào)整圖像的灰度分布,增強圖像的對比度B.基于Retinex理論的方法可以分離圖像的光照和反射成分,從而改善圖像的視覺效果C.圖像增強算法可以在不增加噪聲的情況下,顯著提高圖像的亮度和清晰度D.不同的圖像增強方法適用于不同類型的圖像,需要根據(jù)具體情況選擇合適的方法二、簡答題(本大題共5個小題,共25分)1、(本題5分)解釋計算機視覺在虹膜識別中的關(guān)鍵技術(shù)。2、(本題5分)簡述圖像的特征匹配方法。3、(本題5分)說明計算機視覺在舊貨回收行業(yè)中的應(yīng)用。4、(本題5分)解釋計算機視覺在刑偵中的應(yīng)用。5、(本題5分)解釋計算機視覺中的車牌識別技術(shù)。三、分析題(本大題共5個小題,共25分)1、(本題5分)分析某公益組織的網(wǎng)站設(shè)計,研究其在信息架構(gòu)、視覺設(shè)計、用戶體驗方面的表現(xiàn),以及如何更好地傳達公益理念。2、(本題5分)以一個家居品牌的線上廣告設(shè)計為例,分析其如何運用視覺元素展示家居的舒適、時尚和品牌的生活理念,吸引消費者的購買。3、(本題5分)以一個旅游景區(qū)的游客中心設(shè)計為例,分析其如何通過空間布局、標識設(shè)計等方面為游客提供服務(wù)和展示景區(qū)形象。4、(本題5分)分析某藝術(shù)機構(gòu)的藝術(shù)展覽畫冊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論