難點(diǎn)詳解江蘇南通市田家炳中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形章節(jié)測(cè)試試題(詳解)_第1頁(yè)
難點(diǎn)詳解江蘇南通市田家炳中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形章節(jié)測(cè)試試題(詳解)_第2頁(yè)
難點(diǎn)詳解江蘇南通市田家炳中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形章節(jié)測(cè)試試題(詳解)_第3頁(yè)
難點(diǎn)詳解江蘇南通市田家炳中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形章節(jié)測(cè)試試題(詳解)_第4頁(yè)
難點(diǎn)詳解江蘇南通市田家炳中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形章節(jié)測(cè)試試題(詳解)_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇南通市田家炳中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形章節(jié)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、如圖,在中,AD、AE分別是邊BC上的中線與高,,CD的長(zhǎng)為5,則的面積為()A.8 B.10 C.20 D.402、如圖,在和中,,,,,連接,交于點(diǎn),連接.下列結(jié)論:①;②;③平分;④平分.其中正確的個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3、下列所給的各組線段,能組成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,134、小明把一副含有45°,30°角的直角三角板如圖擺放其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠a+∠β等于()A.180° B.210° C.360° D.270°5、尺規(guī)作圖:作角等于已知角.示意圖如圖所示,則說(shuō)明的依據(jù)是()A.SSS B.SAS C.ASA D.AAS6、如圖,D為∠BAC的外角平分線上一點(diǎn),過(guò)D作DE⊥AC于E,DF⊥AB交BA的延長(zhǎng)線于F,且滿足∠FDE=∠BDC,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)7、將一副三角板按如圖所示的方式放置,使兩個(gè)直角重合,則∠AFD的度數(shù)是()A.10° B.15° C.20° D.25°8、若三條線段中a=3,b=5,c為奇數(shù),那么以a、b、c為邊組成的三角形共有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)9、已知三角形的兩邊長(zhǎng)分別為和,則下列長(zhǎng)度的四條線段中能作為第三邊的是()A. B. C. D.10、如圖,∠BAD=90°,AC平分∠BAD,CB=CD,則∠B與∠ADC滿足的數(shù)量關(guān)系為()A.∠B=∠ADC B.2∠B=∠ADCC.∠B+∠ADC=180° D.∠B+∠ADC=90°第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,∠AOB=90°,OA=OB,直線l經(jīng)過(guò)點(diǎn)O,分別過(guò)A、B兩點(diǎn)作AC⊥l于點(diǎn)C,BD⊥l于點(diǎn)D,若AC=5,BD=3,則CD=_______.2、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線交于點(diǎn)P,點(diǎn)E、F分別在邊BC、AC上,且都不與點(diǎn)C重合,若∠EPF=45°,連接EF,當(dāng)AC=6,BC=8,AB=10時(shí),則△CEF的周長(zhǎng)為_____.3、如圖,點(diǎn),在直線上,且,且,過(guò),,分別作,,,若,,,則的面積是______.4、如圖,△PBC的面積為5cm2,BP平分∠ABC,AP⊥BP于點(diǎn)P,則△ABC的面積為_____cm2.5、如圖,已知∠A=60°,∠B=20°,∠C=30°,則∠BDC的度數(shù)為_____.6、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按圖中所示位置擺放,點(diǎn)D在邊AB上,EFBC,則∠ADF的度數(shù)為_____度.7、如圖,在中,已知點(diǎn),,分別為,,的中點(diǎn),且,則陰影部分的面積______.8、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結(jié)論有_____.(填序號(hào))9、如圖,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面積為58,△ADC的面積為30,則△ABD的面積等于______.10、如圖,∠1=∠2,加上條件_____,可以得到△ADB≌△ADC(SAS).三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖所示,已知,請(qǐng)你添加一個(gè)條件,證明:.(1)你添加的條件是______;(2)請(qǐng)寫出證明過(guò)程.2、如圖,直角坐標(biāo)系中,點(diǎn)B(a,0),點(diǎn)C(0,b),點(diǎn)A在第一象限.若a,b滿足(a?t)2+|b?t|=0(t>0).(1)證明:OB=OC;(2)如圖1,連接AB,過(guò)A作AD⊥AB交y軸于D,在射線AD上截取AE=AB,連接CE,F(xiàn)是CE的中點(diǎn),連接AF,OA,當(dāng)點(diǎn)A在第一象限內(nèi)運(yùn)動(dòng)(AD不過(guò)點(diǎn)C)時(shí),證明:∠OAF的大小不變;(3)如圖2,B′與B關(guān)于y軸對(duì)稱,M在線段BC上,N在CB′的延長(zhǎng)線上,且BM=NB′,連接MN交x軸于點(diǎn)T,過(guò)T作TQ⊥MN交y軸于點(diǎn)Q,當(dāng)t=2時(shí),求點(diǎn)Q的坐標(biāo).3、如圖,已知點(diǎn)A,E,F(xiàn),C在同一條直線上,AE=CF,AB∥CD,∠B=∠D.請(qǐng)問(wèn)線段AB與CD相等嗎?說(shuō)明理由.4、如圖,小明站在堤岸的A點(diǎn)處,正對(duì)他的S點(diǎn)停有一艘游艇.他想知道這艘游艇距離他有多遠(yuǎn),于是他沿堤岸走到電線桿B旁,接著再往前走相同的距離,到達(dá)C點(diǎn).然后他向左直行,當(dāng)看到電線桿與游艇在一條直線上時(shí)停下來(lái),此時(shí)他位于D點(diǎn).小明測(cè)得C,D間的距離為90m,求在A點(diǎn)處小明與游艇的距離.5、下面是“作一個(gè)角的平分線”的尺規(guī)作圖過(guò)程.已知:如圖,鈍角.求作:射線OC,使.作法:如圖,①在射線OA上任取一點(diǎn)D;②以點(diǎn)О為圓心,OD長(zhǎng)為半徑作弧,交OB于點(diǎn)E;③分別以點(diǎn)D,E為圓心,大于長(zhǎng)為半徑作弧,在內(nèi),兩弧相交于點(diǎn)C;④作射線OC.則OC為所求作的射線.完成下面的證明.證明:連接CD,CE由作圖步驟②可知______.由作圖步驟③可知______.∵,∴.∴(________)(填推理的依據(jù)).6、如圖,ABCF,E為DF的中點(diǎn),AB=20,CF=15,求BD的長(zhǎng)度.-參考答案-一、單選題1、C【分析】根據(jù)三角形中線的性質(zhì)得出CB的長(zhǎng)為10,再用三角形面積公式計(jì)算即可.【詳解】解:∵AD是邊BC上的中線,CD的長(zhǎng)為5,∴CB=2CD=10,的面積為,故選:C.【點(diǎn)睛】本題考查了三角形中線的性質(zhì)和面積公式,解題關(guān)鍵是明確中線的性質(zhì)求出底邊長(zhǎng).2、C【分析】由全等三角形的判定及性質(zhì)對(duì)每個(gè)結(jié)論推理論證即可.【詳解】∵∴∴又∵,∴∴故①正確∵∴由三角形外角的性質(zhì)有則故②正確作于,于,如圖所示:則°,在和中,,∴,∴,在和中,∴,∴∴平分故④正確假設(shè)平分則∵∴即由④知又∵為對(duì)頂角∴∴∴∴在和中,∴即AB=AC又∵故假設(shè)不符,故不平分故③錯(cuò)誤.綜上所述①②④正確,共有3個(gè)正確.故選:C.【點(diǎn)睛】本題考查了全等三角形的判定及性質(zhì),靈活的選擇全等三角形的判定的方法是解題的關(guān)鍵,從判定兩個(gè)三角形全等的方法可知,要判定兩個(gè)三角形全等,需要知道這兩個(gè)三角形分別有三個(gè)元素(其中至少一個(gè)元素是邊)對(duì)應(yīng)相等,這樣就可以利用題目中的已知邊角迅速、準(zhǔn)確地確定要補(bǔ)充的邊角,有目的地完善三角形全等的條件,從而得到判定兩個(gè)三角形全等的思路.3、D【分析】根據(jù)三角形三邊關(guān)系定理,判斷選擇即可.【詳解】∵2+11=13,∴A不符合題意;∵5+7=12,∴B不符合題意;∵5+5=10<11,∴C不符合題意;∵5+12=17>13,∴D符合題意;故選D.【點(diǎn)睛】本題考查了構(gòu)成三角形的條件,熟練掌握三角形三邊關(guān)系是解題的關(guān)鍵.4、B【分析】已知,得到,根據(jù)外角性質(zhì),得到,,再將兩式相加,等量代換,即可得解;【詳解】解:如圖所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故選D.【點(diǎn)睛】本題主要考查了三角形外角定理的應(yīng)用,準(zhǔn)確分析計(jì)算是解題的關(guān)鍵.5、A【分析】利用基本作圖得到OD=OC=OD′=OC′,CD=C′D′,則根據(jù)全等三角形的判定方法可根據(jù)“SSS”可判斷△OCD≌△O′C′D′,然后根據(jù)全等三角形的性質(zhì)得到∠A′OB′=∠AOB.【詳解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根據(jù)“SSS”可判斷△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故選:A.【點(diǎn)睛】本題考查了作圖﹣基本作圖和全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練掌握基本作圖和全等三角形的判定定理.6、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點(diǎn)睛】本題主要考查了全等三角形的判定及性質(zhì),外角的性質(zhì)等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關(guān)鍵.7、B【分析】根據(jù)三角板各角度數(shù)和三角形的外角性質(zhì)可求得∠BFE,再根據(jù)對(duì)頂角相等求解即可.【詳解】解:由題意,∠ABC=60°,∠E=45°,∵∠ABC=∠E+∠BFE,∴∠BFE=∠ABC-∠E=60°-45°=15°,∴∠AFD=∠BFE=15°,故選:B.【點(diǎn)睛】本題考查三角板各角的度數(shù)、三角形的外角性質(zhì)、對(duì)頂角相等,熟知三角板各角的度數(shù),掌握三角形的外角性質(zhì)是解答的關(guān)鍵.8、C【分析】根據(jù)三角形的三邊關(guān)系,得到合題意的邊,進(jìn)而求得三角形的個(gè)數(shù).【詳解】解:c的范圍是:5﹣3<c<5+3,即2<c<8.∵c是奇數(shù),∴c=3或5或7,有3個(gè)值.則對(duì)應(yīng)的三角形有3個(gè).故選:C.【點(diǎn)睛】本題主要考查了三角形三邊關(guān)系,準(zhǔn)確分析判斷是解題的關(guān)鍵.9、C【分析】根據(jù)三角形的三邊關(guān)系可得,再解不等式可得答案.【詳解】解:設(shè)三角形的第三邊為,由題意可得:,即,故選:C.【點(diǎn)睛】本題主要考查了三角形的三邊關(guān)系,解題的關(guān)鍵是掌握三角形兩邊之和大于第三邊;三角形的兩邊差小于第三邊.10、C【分析】由題意在射線AD上截取AE=AB,連接CE,根據(jù)SAS不難證得△ABC≌△AEC,從而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,證得∠B=∠CDE,即可得出結(jié)果.【詳解】解:在射線AD上截取AE=AB,連接CE,如圖所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC與△AEC中,,∴△ABC≌△AEC(SAS),∴BC=EC,∠B=∠AEC,∵CB=CD,∴CD=CE,∴∠CDE=∠CED,∴∠B=∠CDE,∵∠ADC+∠CDE=180°,∴∠ADC+∠B=180°.故選:C.【點(diǎn)睛】本題主要考查全等三角形的判定與性質(zhì),解答的關(guān)鍵是作出適當(dāng)?shù)妮o助線AE,CE.二、填空題1、2【分析】首先根據(jù)同角的余角相等得到∠A=∠BOD,然后利用AAS證明△ACO≌△ODB,根據(jù)全等三角形對(duì)應(yīng)邊相等得出AC=OD=5,OC=BD=3,根據(jù)線段之間的數(shù)量關(guān)系即可求出CD的長(zhǎng)度.【詳解】解:∵AC⊥l于點(diǎn)C,BD⊥l于點(diǎn)D,∴∠ACO=∠ODB=90°,∵∠AOB=90°,∴∠A=90°﹣∠AOC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=5,OC=BD=3,∴CD=OD﹣OC=5﹣3=2,故答案為:2.【點(diǎn)睛】此題考查了全等三角形的性質(zhì)和判定,同角的余角相等,解題的關(guān)鍵是根據(jù)題意證明△ACO≌△ODB.2、4【分析】根據(jù)題意過(guò)點(diǎn)P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點(diǎn)J,使得MJ=FN,連接PJ,進(jìn)而利用全等三角形的性質(zhì)證明EF=EM+EN,即可得出結(jié)論.【詳解】解:如圖,過(guò)點(diǎn)P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點(diǎn)J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長(zhǎng)=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長(zhǎng)為4,故答案為:4.【點(diǎn)睛】本題考查角平分線的性質(zhì)定理,正方形的判定,全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問(wèn).3、15【分析】根據(jù)AAS證明△EFA≌△AGB,△BGC≌△CHD,再根據(jù)全等三角形的性質(zhì)以及三角形的面積公式求解即可.【詳解】解:(1)∵EF⊥FG,BG⊥FG,∴∠EFA=∠AGB=90°,∴∠AEF+∠EAF=90°,又∵AE⊥AB,即∠EAB=90°,∴∠BAG+∠EAF=90°,∴∠AEF=∠BAG,在△AEC和△CDB中,,∴△EFA≌△AGB(AAS);同理可證△BGC≌△CHD(AAS),∴AG=EF=6,CG=DH=4,∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.故答案為:15.【點(diǎn)睛】本題考查了三角形全等的性質(zhì)和判定,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.4、10【分析】根據(jù)已知條件證得△ABP≌△EBP,根據(jù)全等三角形的性質(zhì)得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【詳解】解:延長(zhǎng)AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S陰影=10(cm2),故答案為:10.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)和判定,三角形的面積的應(yīng)用,注意:等底等高的三角形的面積相等.5、110°【分析】延長(zhǎng)BD交AC于點(diǎn)E,根據(jù)三角形的外角性質(zhì)計(jì)算,得到答案.【詳解】延長(zhǎng)BD交AC于點(diǎn)E,∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,∴∠DEC=∠A+∠B=80°,則∠BDC=∠DEC+∠C=110°,故答案為:110°.【點(diǎn)睛】本題考查了三角形外角的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,作輔助線DE是解題的關(guān)鍵.6、75【分析】設(shè)CB與ED交點(diǎn)為G,依據(jù)平行線的性質(zhì),即可得到∠CGD的度數(shù),再根據(jù)三角形外角的性質(zhì),得到∠BDE的度數(shù),即可得∠ADF的度數(shù).【詳解】如圖所示,設(shè)CB與ED交點(diǎn)為G,∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,∵EF∥BC,∴∠E=∠CGD=45°,又∵∠CGD是△BDG的外角,∴∠CGD=∠B+∠BDE,∴∠BDE=45°-30°=15°,∴∠ADF=180°-90°-∠BDE=75°故答案為:75.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)以及三角形外角性質(zhì),解題時(shí)注意:兩條平行線被第三條直線所截,同位角相等.7、【分析】根據(jù)三角形中線性質(zhì),平分三角形面積,先利用AD為△ABC中線可得S△ABD=S△ACD,根據(jù)E為AD中點(diǎn),,根據(jù)BF為△BEC中線,即可.【詳解】解:∵AD為△ABC中線∴S△ABD=S△ACD,又∵E為AD中點(diǎn),故,∴,∵BF為△BEC中線,∴cm2.故答案為:1cm2.【點(diǎn)撥】本題考查了三角形中線的性質(zhì),牢固掌握并會(huì)運(yùn)用是解題關(guān)鍵.8、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據(jù)③△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,可知②正確;④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯(cuò)誤;⑤利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠Q(mào)E,∴DP≠DE;故④錯(cuò)誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結(jié)論有:①②③⑤.故答案為:①②③⑤.【點(diǎn)睛】本題綜合考查等邊三角形判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線的判定與性質(zhì)等知識(shí)點(diǎn)的運(yùn)用.要求學(xué)生具備運(yùn)用這些定理進(jìn)行推理的能力.9、28【分析】延長(zhǎng)交于,由證明,得出,得出,進(jìn)而得出,即可得出結(jié)果.【詳解】如圖所示,延長(zhǎng)交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案為:28.【點(diǎn)睛】此題考查全等三角形的判定與性質(zhì),三角形面積的計(jì)算,證明三角形全等得出是解題關(guān)鍵.10、AB=AC(答案不唯一)【分析】根據(jù)全等三角形的判定定理SAS證得△ADB≌△ADC.【詳解】解:加上條件,AB=AC,可以得到△ADB≌△ADC(SAS).在△ADB與△ADC中,,∴△ADB≌△ADC(SAS),故答案為:AB=AC(答案不唯一).【點(diǎn)睛】本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.三、解答題1、(1);(2)見(jiàn)解析【分析】(1)此題是一道開放型的題目,答案不唯一,如∠B=∠C或∠ADB=∠ADC等;(2)根據(jù)全等三角形的判定定理AAS推出△ABD≌△ACD,再根據(jù)全等三角形的性質(zhì)得出即可.【詳解】解:添加的條件是,故答案為:;證明:在和中,≌,.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)和判定的應(yīng)用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等.2、(1)見(jiàn)解析(2)見(jiàn)解析(3)點(diǎn)坐標(biāo)為(,).【分析】(1)利用絕對(duì)值以及平方的非負(fù)性求出B、C的坐標(biāo),利用坐標(biāo)表示邊長(zhǎng),即可證明結(jié)論.(2)延長(zhǎng)至點(diǎn),使,連接、,利用條件先證明,再根據(jù)全等三角形性質(zhì),進(jìn)一步證明,最后綜合條件得到為等腰直角三角形,進(jìn)而得到∠OAF為,是個(gè)定值,即可證得結(jié)論成立.(3)先連接、、、,過(guò)作交軸于,利用平行關(guān)系和邊相等證明,然后通過(guò)全等三角形性質(zhì)進(jìn)一步證明,再根據(jù)角與角之間的關(guān)系,求出,得到為等腰直角三角形,最后利用等腰三角形的性質(zhì),即可求出點(diǎn)坐標(biāo).【詳解】(1)證明:(a?t)2+|b?t|=0(t>0),,即,點(diǎn)B坐標(biāo)為(a,0),點(diǎn)C坐標(biāo)為(0,b),,故結(jié)論得證.(2)解:如圖所示:延長(zhǎng)至點(diǎn),使,連接、,是的中點(diǎn),,在和中,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論