難點解析-黑龍江七臺河勃利縣7年級數(shù)學下冊第五章生活中的軸對稱同步測試試題(解析版)_第1頁
難點解析-黑龍江七臺河勃利縣7年級數(shù)學下冊第五章生活中的軸對稱同步測試試題(解析版)_第2頁
難點解析-黑龍江七臺河勃利縣7年級數(shù)學下冊第五章生活中的軸對稱同步測試試題(解析版)_第3頁
難點解析-黑龍江七臺河勃利縣7年級數(shù)學下冊第五章生活中的軸對稱同步測試試題(解析版)_第4頁
難點解析-黑龍江七臺河勃利縣7年級數(shù)學下冊第五章生活中的軸對稱同步測試試題(解析版)_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江七臺河勃利縣7年級數(shù)學下冊第五章生活中的軸對稱同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列圖形中,不一定是軸對稱圖形的是()A.直角三角形 B.等腰三角形 C.等邊三角形 D.正方形2、如圖,四邊形ABCD是軸對稱圖形,直線AC是它的對稱軸,若∠BAC=85°,∠B=25°,則∠BCD的大小為()A.150° B.140° C.130° D.120°3、以下四大通訊運營商的企業(yè)圖標中,是軸對稱圖形的是()A. B. C. D.4、下列圖形中不是軸對稱圖形的是()A. B.C. D.5、下列交通標志圖案是軸對稱圖形的是()A. B.C. D.6、下列四個圖案中是軸對稱圖形的是()A. B.C. D.7、下列學習用具中,不是軸對稱圖形的是()A. B.C. D.8、下列圖案中,有且只有三條對稱軸的是()A. B. C. D.9、自新冠肺炎疫情發(fā)生以來,莆田市積極普及科學防控知識,下面是科學防控知識的圖片,圖片上有圖案和文字說明,其中的圖案是軸對稱圖是()A.有癥狀早就醫(yī) B.打噴捂口鼻C.防控疫情我們在一起 D.勤洗手勤通風10、如圖,在的正方形網(wǎng)格中,格線的交點稱為格點,以格點為頂點的三角形稱為格點三角形,圖中的為格點三角形,在圖中與成軸對稱的格點三角形可以畫出()A.6個 B.5個 C.4個 D.3個第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、在風箏節(jié)活動中,小華用木棒制作了一個風箏,這個風箏可以看作將沿直線翻折,得到(如圖所示).若,,,則制作這個風箏大約需要木棒的長度為______cm.2、如圖將一條兩邊互相平行的紙帶按如圖折疊,若∠EFG+∠EGD=150°,則∠EGD=_____3、如圖,從標有數(shù)字1,2,3,4的四個小正方形中拿走一個,成為一個軸對稱圖形,則應該拿走的小正方形的標號是______.4、如圖,直線MN是四邊形AMBN的對稱軸,點P是直線MN上的一點,寫請出一個正確的結論__.5、漢字中、日、田等都可看作是軸對稱圖形,請你再寫出一個這樣的漢字:______.6、如圖,四邊形ABCD中,AD∥BC,直線l是它的對稱軸,∠B=53°,則∠D的大小為______°.7、如圖,在中,是中線,是角平分線,是高.填空:(1)___________;(2)____________;(3)______;(4)______.8、將一張長方形紙片按如圖所示的方式折疊,BC,BD為折痕,則∠CBD大小為_____度.9、如圖,把一張長方形的紙條按如圖那樣折疊后,若量得∠DBA=40°,則∠ABC的度數(shù)為_____度.10、已知,如圖,,點M,N分別是邊OA,OB上的定點,點P,Q分別是邊OB,OA上的動點,記,,當最小時,則______.三、解答題(6小題,每小題10分,共計60分)1、如圖,將各圖形補成關于直線l對稱的圖形.2、如圖,在邊長為1的小正方形組成的正方形網(wǎng)格中,點A,B,C在小正方形的頂點上.(1)畫出與△ABC關于直線l成軸對稱的△A'B'C;(2)在直線l上找一點P(在圖中標出)使PB+PC的長最短,并求出這個最短長度.3、如圖的三角形紙板中,沿過點B的直線折疊這個三角形,使點C落在AB邊的點E處,折痕為BD.(1)若AB=10cm,BC=8cm,AC=6cm,求△AED的周長;(2)若∠C=100°,∠A=70°,求∠BDE的度數(shù).4、在數(shù)學活動課上,王老師要求學生將圖1所示的3×3正方形方格紙,涂黑其中三個方格,使剩下的部分成為軸對稱圖形.規(guī)定:凡通過旋轉能重合的圖形視為同一種圖形,如圖2的四幅圖就視為同一種設計方案(陰影部分為涂黑部分)請在圖中畫出4種不同的設計方案,將每種方案中三個方格涂黑(每個3×3的正方形方格畫一種,例圖除外,并且畫上對稱軸)5、如圖是三個5×5的正方形網(wǎng)格,請你用三種不同的方法分別把每幅圖中的一個白色小正方形涂上陰影,使每幅圖中的陰影部分成為一個軸對稱圖形.6、如圖所示,由每一個邊長均為1的小正方形構成的8×8正方形網(wǎng)格中,點A,B,C,M,N均在格點上(小正方形的頂點為格點),利用網(wǎng)格畫圖.(1)畫出ABC關于直線MN對稱的;(2)在線段MN上找一點P,使得∠APM=∠CPN.(保留必要的畫圖痕跡,并標出點P位置)-參考答案-一、單選題1、A【分析】根據(jù)軸對稱圖形的概念求解即可.【詳解】解:根據(jù)軸對稱的定義,等腰三角形、等邊三角形、正方形一定是軸對稱圖形,直角三角形不一定是軸對稱圖形,故選:A.【點睛】本題主要考查了軸對稱圖形的知識,掌握軸對稱圖形的概念是解決此類問題的關鍵.2、B【分析】根據(jù)三角形內角和的性質可求得,再根據(jù)對稱的性質可得,即可求解.【詳解】解:根據(jù)三角形內角和的性質可求得由軸對稱圖形的性質可得,∴故選:B【點睛】此題考查了三角形內角和的性質,軸對稱圖形的性質,解題的關鍵是掌握并利用相關基本性質進行求解.3、D【分析】根據(jù)軸對稱圖形的定義(在平面內沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形)進行判斷即可得.【詳解】解:根據(jù)軸對稱圖形的定義判斷可得:只有D選項符合題意,故選:D.【點睛】題目主要考查軸對稱圖形的判斷,理解軸對稱圖形的定義是解題關鍵.4、C【詳解】解:A、是軸對稱圖形,故本選項不符合題意;B、是軸對稱圖形,故本選項不符合題意;C、不是軸對稱圖形,故本選項符合題意;D、是軸對稱圖形,故本選項不符合題意;故選:C【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握沿對稱軸折疊后,兩部分能夠完全重合的圖形是軸對稱圖形是解題的關鍵.5、B【詳解】解:、不是軸對稱圖形,故本選項錯誤,不符合題意;、是軸對稱圖形,故本選項正確,符合題意;、不是軸對稱圖形,故本選項錯誤,不符合題意;、不是軸對稱圖形,故本選項錯誤,不符合題意.故選:B.【點睛】本題考查了軸對稱圖形,解題的關鍵是掌握軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.6、D【分析】根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】解:A、不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;B、不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;C、不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;D、是軸對稱圖形,符合題意.故答案為:D.【點睛】本題考查了軸對稱圖形,解題關鍵是掌握軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.7、B【分析】把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合,則這個圖形是軸對稱圖形,根據(jù)定義逐一分析即可.【詳解】解:選項A中的圖形是軸對稱圖形,故A不符合題意;選項B中的圖形不是軸對稱圖形,故B符合題意;選項C中的圖形是軸對稱圖形,故C不符合題意;選項D中的圖形是軸對稱圖形,故D不符合題意;故選B【點睛】本題考查的是軸對稱圖形的識別,掌握軸對稱圖形的定義是解題的關鍵.8、D【詳解】解:A、不是軸對稱圖形,故不符合題意;B、有四條對稱軸,故不符合題意;C、不是軸對稱圖形,故不符合題意;D、有三條對稱軸,故符合題意.故選:D.【點睛】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關鍵.一個圖形的一部分,以某條直線為對稱軸,經過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.9、C【分析】根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形進行解答即可.【詳解】解:A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、是軸對稱圖形,故C符合題意;D、不是軸對稱圖形,故D不符合題意.故選C.【點睛】本題主要考查了軸對稱圖形,正確掌握軸對稱圖形的性質是解題關鍵.10、A【分析】直接利用軸對稱圖形的性質分別得出符合題意的答案.【詳解】解:符合題意的三角形如圖所示:分三類對稱軸為橫向:對稱軸為縱向:對稱軸為斜向:滿足要求的圖形有6個.故選:A.【點睛】本題主要考查利用軸對稱來設計軸對稱圖形,關鍵是要掌握軸對稱的性質和軸對稱圖形的含義.二、填空題1、310【分析】依據(jù)折疊即可得到△ACD≌△ABD,進而得出AB=AC=40cm,CD=BD=70cm,即可得出制作這個風箏大約需要木棒的長度.【詳解】解:∵△ACD沿直線AD翻折得到△ABD,∴△ACD≌△ABD,∴AB=AC=40cm,CD=BD=70cm,∴制作這個風箏大約需要木棒的長度為2(40+70)+90=310(cm).故答案為:310.【點睛】本題主要考查了翻折變換,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.2、【分析】先根據(jù)平行線的性質得到,結合已知∠EFG+∠EGD=150°,解得∠EGD=,再根據(jù)折疊的性質解得,結合兩直線平行,同旁內角互補得到,據(jù)此整理得,進而解題.【詳解】解:∠EFG+∠EGD=150°,∠EGD=折疊故答案為:.【點睛】本題考查折疊的性質、平行線的性質等知識,兩直線平行,同旁內角互補,掌握相關知識是解題關鍵.3、2【分析】根據(jù)軸對稱圖形的定義求解即可.軸對稱圖形:平面內,一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形.【詳解】解:由軸對稱圖形的定義可得,應該拿走的小正方形的標號是2.故答案為:2.【點睛】此題考查了軸對稱圖形的定義,解題的關鍵是熟練掌握軸對稱圖形的定義.軸對稱圖形:平面內,一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形.4、AP=BP(答案不唯一)【分析】根據(jù)軸對稱圖形的性質,即可求解.【詳解】解:∵直線MN是四邊形AMBN的對稱軸,∴AP=BP.故答案為:AP=BP(答案不唯一)【點睛】本題主要考查了軸對稱圖形的性質,熟練掌握軸對稱圖形的關鍵是找到對稱軸,圖形關于對稱軸折疊前后對應線段相等,對應角相等是解題的關鍵.5、一(答案不唯一)【分析】如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據(jù)此解答即可.【詳解】解:由軸對稱圖形的定義可得:一、二、三、甲、出、本、王、平都是軸對稱圖形.故答案為:一(答案不唯一).【點睛】此題主要考查了軸對稱圖形,掌握軸對稱圖形的意義,判斷是不是軸對稱圖形的關鍵是找出對稱軸,看圖形沿對稱軸對折后兩部分能否完全重合.6、127【分析】根據(jù)軸對稱性質得出∠C=∠B=53°,根據(jù)平行線性質得出∠C+∠D=180°即可.【詳解】解:直線l是四邊形ABCD的對稱軸,∠B=53°,∴∠C=∠B=53°,∵AD∥BC,∴∠C+∠D=180°,∴∠D=180°-53°=127°.故答案為:127.【點睛】本題考查軸對稱性質,平行線性質,求一個角的的補角,掌握軸對稱性質,平行線性質,求一個角的的補角.7、##【分析】根據(jù)三角形中線的定義、角平分線的定義及三角形的高可直接求解各個小問.【詳解】解:(1)∵是中線,∴;故答案為,;(2)∵是角平分線,∴,故答案為,;(3)∵是高,∴,故答案為;(4)由題意得:;故答案為.【點睛】本題主要考查三角形的中線、角平分線及高線,熟練掌握三角形的中線、角平分線及高線的定義是解題的關鍵.8、90【分析】根據(jù)折疊的性質得到∠ABC=∠A′BC,∠EBD=∠E′BD,再根據(jù)平角的定義有∠ABC+∠A′BC+∠EBD+∠E′BD=180°,易得∠A′BC+∠E′BD=180°×=90°,則∠CBD=90°.【詳解】因為一張長方形紙片沿BC、BD折疊,所以∠ABC=∠A′BC,∠EBD=∠E′BD,而∠ABC+∠A′BC+∠EBD+∠E′BD=180°,所以∠A′BC+∠E′BD=180°×=90°,即∠CBD=90°.故答案為:90【點睛】本題考查了折疊的性質:折疊前后兩圖形全等,即對應角相等,對應相等相等.也考查了平角的定義.9、70【分析】由∠DBA的度數(shù)可知∠ABE度數(shù),再根據(jù)折疊的性質可得∠ABC=∠EBC=∠ABE即可.【詳解】解:延長DB到點E,如圖:∵∠DBA=40°,∴∠ABE=180°﹣∠DBA=180°﹣40°=140°,又∵把一張長方形的紙條按如圖那樣折疊,∴∠ABC=∠EBC=∠ABE=70°,故答案為:70.【點睛】本題主要考查了折疊的性質和鄰補角的定義,屬于基礎題目,得到∠ABC=∠ABE是解題的關鍵.10、60°度【分析】作M關于OB的對稱點M′,N關于OA的對稱點N′,連接M′N′交OA于Q,交OB于P,則MP+PQ+QN最小易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,根據(jù)三角形的外角的性質和平角的定義即可得到結論.【詳解】解:如圖,作M關于OB的對稱點M′,N關于OA的對稱點N′,連接M′N′交OA于Q,交OB于P,則MP+PQ+QN最小,∴∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∴∠QPN=(180°﹣α)=∠AOB+∠MQP=30°+(180°﹣β),∴180°﹣α=60°+(180°﹣β),∴β﹣α=60°,故答案為:60.【點睛】本題考查軸對稱﹣最短路線問題、三角形的內角和定理.三角形的外角的性質等知識,解題的關鍵是靈活運用軸對稱知識作出輔助線解決問題.三、解答題1、見解析【分析】根據(jù)軸對稱圖形的性質,先找出各關鍵點關于直線l的對稱點,再順次連接即可.【詳解】解:關于直線l對稱的圖形如圖所示.【點睛】本題考查作圖-軸對稱變換,解題的關鍵是掌握軸對稱變換的性質,幾何圖形都可看做是由點組成,我們在畫一個圖形的軸對稱圖形時,也是先從確定一些特殊的對稱點開始.2、(1)見解析;(2)畫圖見解析,【分析】(1)由題意直接利用關于直線對稱的性質得出對應點位置進而得出答案;(2)根據(jù)題意利用軸對稱求最短路線的性質得出P點位置,進而利用勾股定理得出答案.【詳解】解:(1)如圖所示:△A′

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論