版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.如圖,點(diǎn)A(1,n),B(n,1),我們定義:將點(diǎn)A向下平移1個(gè)單位,再向右平移1個(gè)單位,同時(shí)點(diǎn)B向上平移1個(gè)單位,再向左平移1個(gè)單位稱為一次操作,此時(shí)平移后的兩點(diǎn)記為A1,B1,t次操作后兩點(diǎn)記為At,Bt.(1)直接寫(xiě)出A1,B1,At,Bt的坐標(biāo)(用含n、t的式子表示);(2)以下判斷正確的是.A.經(jīng)過(guò)n次操作,點(diǎn)A,點(diǎn)B位置互換B.經(jīng)過(guò)(n﹣1)次操作,點(diǎn)A,點(diǎn)B位置互換C.經(jīng)過(guò)2n次操作,點(diǎn)A,點(diǎn)B位置互換D.不管幾次操作,點(diǎn)A,點(diǎn)B位置都不可能互換(3)t為何值時(shí),At,B兩點(diǎn)位置距離最近?解析:(1)A1(2,n﹣1),B1(n﹣1,2),At(1+t,n﹣t),Bt(n﹣t,1+t);(2)B;(3)t=或t=或t=【分析】(1)根據(jù)點(diǎn)在平面直角坐標(biāo)系中的平移規(guī)律求解可得答案;(2)由1+t=n時(shí)t=n﹣1,知n﹣t=n﹣(n﹣1)=1,據(jù)此可得答案;(3)分n為奇數(shù)和偶數(shù)兩種情況,得出對(duì)應(yīng)的方程,解之可得n關(guān)于t的式子.【詳解】解:(1)A1(2,n﹣1),B1(n﹣1,2),At(1+t,n﹣t),Bt(n﹣t,1+t);(2)當(dāng)1+t=n時(shí),t=n﹣1.此時(shí)n﹣t=n﹣(n﹣1)=1,故選:B;(3)當(dāng)n為奇數(shù)時(shí):1+t=n﹣t解得t=,當(dāng)n為偶數(shù)時(shí):1+t=n﹣t+1解得t=,或1+t=n﹣t﹣1解得t=.【點(diǎn)睛】本題主要考查坐標(biāo)與圖形變化—平移,解題的關(guān)鍵是掌握點(diǎn)在平面直角坐標(biāo)系中的平移規(guī)律:橫坐標(biāo),右移加,左移減;縱坐標(biāo),上移加,下移減.2.如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn),其中滿足,D為直線AB與軸的交點(diǎn),C為線段AB上一點(diǎn),其縱坐標(biāo)為.(1)求的值;(2)當(dāng)為何值時(shí),和面積的相等;(3)若點(diǎn)C坐標(biāo)為(-2,1),點(diǎn)M(m,-3)在第三象限內(nèi),滿足,求m的取值范圍.(注:表示的面積)解析:(1);(2)當(dāng)時(shí),和面積的相等;(3)m的取值范圍是【分析】(1)利用非負(fù)數(shù)的性質(zhì)求出a,b,c即可.(2)設(shè)點(diǎn)D的坐標(biāo)為(0,y),根據(jù)面積關(guān)系,構(gòu)建方程求出y,再根據(jù)△BOC和△AOD面積的相等,構(gòu)建方程求出t即可.(3)分兩種情形:①當(dāng)-2<m<0時(shí),如圖1中,②當(dāng)m≤-2時(shí),如圖2中,根據(jù)S△MOC≥5,構(gòu)建不等式求解即可.【詳解】解:(1)∵|a-2|+(b-3)2+=0,又∵|a-2|≥0,(b-3)2≥0,≥0,∴,∴a=2,b=3,c=-4;(2)設(shè)點(diǎn)D的坐標(biāo)為(0,y),則S△BOD=×BO×OD=×4×y=2y,S△AOD=xA?OD=×2y=y,S△AOB=×OB?yA=×4×3=6,∵S△BOD+S△AOD=S△AOB,即2y+y=6,解得y=2,即點(diǎn)D的坐標(biāo)為(0,2),∴S△BOC=BO?yc=×4t=2t,S△AOD=xA?OD=×2×2=2,∵△BOC和△AOD面積的相等,即2t=2,解得t=1,∴當(dāng)t=1時(shí),△BOC和△AOD面積的相等;(3)①當(dāng)-2<m<0時(shí),如圖1中,過(guò)點(diǎn)C作CF⊥軸于點(diǎn)F,過(guò)點(diǎn)M作GE⊥軸于點(diǎn)E,過(guò)點(diǎn)C作CG⊥軸交GE于點(diǎn)G,則四邊形CGEF為矩形,∵SCGEF=2×4=8,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(m+2)×4=2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=8?1?(?m)?2(m+2)=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,這與-2<m<0矛盾.②當(dāng)m≤-2時(shí),如圖2中,過(guò)點(diǎn)C作GF⊥軸于點(diǎn)F,過(guò)點(diǎn)M作ME⊥軸于點(diǎn)E,過(guò)點(diǎn)M作MG⊥軸交GF于點(diǎn)G,則四邊形MEFG為矩形,∵SGMEF=(0-m)×4=-4m,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(?2?m)×4=?2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=?4m?1?(?m)?[?2(m+2)]=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,綜上所述,m的取值范圍是m≤-4.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的性質(zhì),三角形的面積,非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù),構(gòu)建方程解決問(wèn)題,屬于中考?jí)狠S題.3.如圖,在長(zhǎng)方形ABCD中,AB=8cm,BC=6cm,點(diǎn)E是CD邊上的一點(diǎn),且DE=2cm,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以2cm/s的速度沿A→B→C→E運(yùn)動(dòng),最終到達(dá)點(diǎn)E.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.(1)請(qǐng)以A點(diǎn)為原點(diǎn),AB所在直線為x軸,1cm為單位長(zhǎng)度,建立一個(gè)平面直角坐標(biāo)系,并用t表示出點(diǎn)P在不同線段上的坐標(biāo).(2)在(1)相同條件得到的結(jié)論下,是否存在P點(diǎn)使△APE的面積等于20cm2時(shí),若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.解析:(1)建立直角坐標(biāo)系見(jiàn)解析,當(dāng)0<t≤4時(shí),即當(dāng)點(diǎn)P在線段AB上時(shí),其坐標(biāo)為:P(2t,0),當(dāng)4<t≤7時(shí),即當(dāng)點(diǎn)P在線段BC上時(shí),其坐標(biāo)為:P(8,2t﹣8),當(dāng)7<t≤10時(shí),即當(dāng)點(diǎn)P在線段CE上時(shí),其坐標(biāo)為:P(22﹣2t,6);(2)存在,當(dāng)點(diǎn)P的坐標(biāo)分別為:P(,0)或P(8,4)時(shí),△APE的面積等于.【分析】(1)建立平面直角坐標(biāo)系,根據(jù)點(diǎn)P的運(yùn)動(dòng)速度分別求出點(diǎn)P在線段AB,BC,CE上的坐標(biāo);(2)根據(jù)(1)中得到的點(diǎn)P的坐標(biāo)以及,分別列出三個(gè)方程并解出此時(shí)t的值再進(jìn)行討論.【詳解】(1)正確畫(huà)出直角坐標(biāo)系如下:當(dāng)0<t≤4時(shí),點(diǎn)P在線段AB上,此時(shí)P點(diǎn)的橫坐標(biāo)為,其縱坐標(biāo)為0;∴此時(shí)P點(diǎn)的坐標(biāo)為:P(2t,0);同理:當(dāng)4<t≤7時(shí),點(diǎn)P在線段BC上,此時(shí)P點(diǎn)的坐標(biāo)為:P(8,2t﹣8);當(dāng)7<t≤10時(shí),點(diǎn)P在線段CE上,此時(shí)P點(diǎn)的坐標(biāo)為:P(22﹣2t,6).(2)存在,①如圖1,當(dāng)0<t≤4時(shí),點(diǎn)P在線段AB上,,解得:t(s);∴P點(diǎn)的坐標(biāo)為:P(,0).②如圖2,當(dāng)4<t≤7時(shí),點(diǎn)P在線段BC上,;∴;解得:t=6(s);∴點(diǎn)P的坐標(biāo)為:P(8,4).③如圖3,當(dāng)7<t≤10時(shí),點(diǎn)P在線段CE上,;解得:t(s);∵7,∴t(應(yīng)舍去),綜上所述:當(dāng)P點(diǎn)的坐標(biāo)為:P(,0)或P(8,4)時(shí),△APE的面積等于.【點(diǎn)睛】本題考查了三角形的面積的計(jì)算公式,,在本題計(jì)算的過(guò)程中根據(jù)動(dòng)點(diǎn)的坐標(biāo)正確地求出三角形的底邊長(zhǎng)度和高是解題的關(guān)鍵.4.如圖,在平面直角坐標(biāo)系中,四邊形各頂點(diǎn)的坐標(biāo)分別為,,,,現(xiàn)將四邊形經(jīng)過(guò)平移后得到四邊形,點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為.(1)請(qǐng)直接寫(xiě)點(diǎn)、、的坐標(biāo);(2)求四邊形與四邊形重疊部分的面積;(3)在軸上是否存在一點(diǎn),連接、,使,若存在這樣一點(diǎn),求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.解析:(1);(2);(3)存在,或【分析】(1)先確定平移的規(guī)則,然后根據(jù)平移的規(guī)則,求出點(diǎn)的坐標(biāo)即可;(2)由平移的性質(zhì)可知,重疊部分為平行四邊形,且底邊長(zhǎng)為3,高為2,即可求出面積;(3)設(shè)點(diǎn)的坐標(biāo)為,先求出平行四邊形ABCD的面積,然后利用三角形的面積公式,即可求出b的值.【詳解】解:(1)∵,,∴平移的規(guī)則為:向右平移2個(gè)單位,向上平移一個(gè)單位;∵,,,∴;(2)如圖,延長(zhǎng)交x軸于點(diǎn)E,過(guò)點(diǎn)做由平移可知,重疊部分為平行四邊形,高為2,∴重疊部分的面積為(3)存在;設(shè)點(diǎn)的坐標(biāo)為,∵,,∴,∴點(diǎn)的坐標(biāo)為或.【點(diǎn)睛】本題考查了平移的性質(zhì),平行四邊形的性質(zhì),坐標(biāo)與圖形,以及求陰影部分的面積,解題的關(guān)鍵是熟練掌握平移的性質(zhì)進(jìn)行解題.5.在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,過(guò)點(diǎn)作直線軸,垂足為,交線段于點(diǎn).(1)如圖1,過(guò)點(diǎn)作,垂足為,連接.①填空:的面積為_(kāi)_____;②點(diǎn)為直線上一動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);(2)如圖2,點(diǎn)為線段延長(zhǎng)線上一點(diǎn),連接,,線段交于點(diǎn),若,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo)為_(kāi)_____.解析:(1)①6;②的坐標(biāo)為,;(2).【解析】【分析】(1)①易證四邊形AECO為矩形,則點(diǎn)B到AE的距離為OA,AE=OC=3,OA=CE=4,S△ABE=AE?OA,即可得出結(jié)果;②設(shè)點(diǎn)的坐標(biāo)為,分兩種情況:點(diǎn)在點(diǎn)上方,連接,得=++=8,點(diǎn)在點(diǎn)的下方,得=8,分別列出方程解方程即可得出結(jié)果;(2)由S△AOF=S△QBF,則S△AOB=S△QOB,△AOB與△QOB是以AB為同底的三角形,高分別為:OA、QC,得出OA=CQ,即可得出結(jié)果.【詳解】解:(1)①∵CD⊥x軸,AE⊥CD,∴AE∥x軸,四邊形AECO為矩形,點(diǎn)B到AE的距離為OA,∵點(diǎn)A(0,4),點(diǎn)C(3,0),∴AE=OC=3,OA=CE=4,∴S△ABE=AE?OA=×3×4=6,故答案為:6;②設(shè)點(diǎn)的坐標(biāo)為.(i)∵點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,∴.∵,∴.∴點(diǎn)在點(diǎn)上方,連接(如圖1).根據(jù)題意得∵,∴,∴,∴.∴當(dāng)點(diǎn)的坐標(biāo)為.(ii)點(diǎn)在點(diǎn)的下方,連接(如圖2).∵.∴.∴點(diǎn)在點(diǎn)的下方,根據(jù)題意得∵,∴,∴,∴.∴當(dāng)點(diǎn)的坐標(biāo)為.(2)(2)∵S△AOF=S△QBF,如圖3所示:∴S△AOB=S△QOB,∵△AOB與△QOB是以AB為同底的三角形,高分別為:OA、QC,∴OA=CQ,∴點(diǎn)Q的坐標(biāo)為(3,4),故答案為:(3,4).【點(diǎn)睛】本題是三角形綜合題,主要考查了圖形與點(diǎn)的坐標(biāo)、矩形的判定與性質(zhì)、三角形面積的計(jì)算等知識(shí),熟練掌握?qǐng)D形與點(diǎn)的坐標(biāo),靈活運(yùn)用割補(bǔ)法表示三角形面積列出方程是解題的關(guān)鍵.6.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點(diǎn),點(diǎn)為上一點(diǎn),連接,若的平分線交線段于點(diǎn),連接,若,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),且,求的度數(shù).解析:(1)見(jiàn)解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過(guò)點(diǎn)E作,延長(zhǎng)DC至Q,過(guò)點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質(zhì)及角平分線的定義可推出;設(shè),根據(jù)角的和差可得出,結(jié)合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質(zhì),即可得出答案.【詳解】(1)證明:;(2)過(guò)點(diǎn)E作,延長(zhǎng)DC至Q,過(guò)點(diǎn)M作,,,AF平分FH平分設(shè),.【點(diǎn)睛】本題考查了平行線的判定及性質(zhì),角平分線的定義,能靈活根據(jù)平行線的性質(zhì)和判定進(jìn)行推理是解此題的關(guān)鍵.7.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點(diǎn),連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).解析:(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進(jìn)而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關(guān)系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設(shè)∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點(diǎn)睛】本題主要考查平行線的性質(zhì),解決本題的關(guān)鍵是根據(jù)平行線的性質(zhì)解答.8.點(diǎn)A,C,E在直線l上,點(diǎn)B不在直線l上,把線段AB沿直線l向右平移得到線段CD.(1)如圖1,若點(diǎn)E在線段AC上,求證:B+D=BED;(2)若點(diǎn)E不在線段AC上,試猜想并證明B,D,BED之間的等量關(guān)系;(3)在(1)的條件下,如圖2所示,過(guò)點(diǎn)B作PB//ED,在直線BP,ED之間有點(diǎn)M,使得ABE=EBM,CDE=EDM,同時(shí)點(diǎn)F使得ABE=nEBF,CDE=nEDF,其中n≥1,設(shè)BMD=m,利用(1)中的結(jié)論求BFD的度數(shù)(用含m,n的代數(shù)式表示).解析:(1)見(jiàn)解析;(2)當(dāng)點(diǎn)E在CA的延長(zhǎng)線上時(shí),∠BED=∠D-∠B;當(dāng)點(diǎn)E在AC的延長(zhǎng)線上時(shí),∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如圖1中,過(guò)點(diǎn)E作ET∥AB.利用平行線的性質(zhì)解決問(wèn)題.(2)分兩種情形:如圖2-1中,當(dāng)點(diǎn)E在CA的延長(zhǎng)線上時(shí),如圖2-2中,當(dāng)點(diǎn)E在AC的延長(zhǎng)線上時(shí),構(gòu)造平行線,利用平行線的性質(zhì)求解即可.(3)利用(1)中結(jié)論,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解決問(wèn)題即可.【詳解】解:(1)證明:如圖1中,過(guò)點(diǎn)E作ET∥AB.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如圖2-1中,當(dāng)點(diǎn)E在CA的延長(zhǎng)線上時(shí),過(guò)點(diǎn)E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如圖2-2中,當(dāng)點(diǎn)E在AC的延長(zhǎng)線上時(shí),過(guò)點(diǎn)E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如圖,設(shè)∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m=2x+2y,∴x+y=m,∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF,∴∠BFD===.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了平行線的性質(zhì),角平分線的定義等知識(shí),解題的關(guān)鍵是學(xué)會(huì)條件常用輔助線,構(gòu)造平行線解決問(wèn)題,屬于中考常考題型.9.綜合與實(shí)踐背景閱讀:在同一平面內(nèi),兩條不重合的直線的位置關(guān)系有相交、平行,若兩條不重合的直線只有一個(gè)公共點(diǎn),我們就說(shuō)這兩條直線相交,若兩條直線不相交,我們就說(shuō)這兩條直線互相平行兩條直線的位置關(guān)系的性質(zhì)和判定是幾何的重要知識(shí),是初中階段幾何合情推理的基礎(chǔ).已知:AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.問(wèn)題解決:(1)如圖1,直接寫(xiě)出∠A和∠C之間的數(shù)量關(guān)系;(2)如圖2,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;(3)如圖3,在(2)問(wèn)的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.解析:(1);(2)見(jiàn)解析;(3)105°【分析】(1)通過(guò)平行線性質(zhì)和直角三角形內(nèi)角關(guān)系即可求解.(2)過(guò)點(diǎn)B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結(jié)論,結(jié)合角平分線性質(zhì)即可求解.【詳解】解:(1)如圖1,設(shè)AM與BC交于點(diǎn)O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過(guò)點(diǎn)B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過(guò)點(diǎn)B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點(diǎn)睛】本題考查平行線性質(zhì),畫(huà)輔助線,找到角的和差倍分關(guān)系是求解本題的關(guān)鍵.10.如圖,已知直線射線CD,.P是射線EB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PQEC交射線CD于點(diǎn)Q,連接CP.作,交直線AB于點(diǎn)F,CG平分.(1)若點(diǎn)P,F(xiàn),G都在點(diǎn)E的右側(cè),求的度數(shù);(2)若點(diǎn)P,F(xiàn),G都在點(diǎn)E的右側(cè),,求的度數(shù);(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,是否存在這樣的情形,使?若存在,求出的度數(shù);若不存在,請(qǐng)說(shuō)明理由.解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);(2)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=25°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)設(shè)∠EGC=4x,∠EFC=3x,則∠GCF=4x-3x=x,分兩種情況討論:①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時(shí),②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時(shí),依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)設(shè)∠EGC=4x,∠EFC=3x,則∠GCF=∠FCD=4x-3x=x,①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時(shí),則∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時(shí),則∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解題時(shí)注意:兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.11.已知點(diǎn)C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過(guò)點(diǎn)O′作OB的垂線,與∠OCD的平分線交于點(diǎn)P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過(guò)O點(diǎn)作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進(jìn)而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過(guò)O點(diǎn)作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點(diǎn)睛】此題考查了平行線的判定和性質(zhì),平移的性質(zhì),直角的定義,角平分線的定義,正確作出輔助線是解決問(wèn)題的關(guān)鍵.12.問(wèn)題情境:(1)如圖1,,,.求度數(shù).小穎同學(xué)的解題思路是:如圖2,過(guò)點(diǎn)作,請(qǐng)你接著完成解答.問(wèn)題遷移:(2)如圖3,,點(diǎn)在射線上運(yùn)動(dòng),當(dāng)點(diǎn)在、兩點(diǎn)之間運(yùn)動(dòng)時(shí),,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過(guò)點(diǎn)作),請(qǐng)說(shuō)明理由;(3)在(2)的條件下,如果點(diǎn)在、兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)不重合),請(qǐng)你猜想、、之間的數(shù)量關(guān)系并證明.解析:(1)見(jiàn)解析;(2),理由見(jiàn)解析;(3)①當(dāng)在延長(zhǎng)線時(shí)(點(diǎn)不與點(diǎn)重合),;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由見(jiàn)解析【分析】(1)過(guò)P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過(guò)過(guò)作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫(huà)出圖形(分兩種情況:①點(diǎn)P在BA的延長(zhǎng)線上,②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過(guò)作,,,,,,,,;(2),理由如下:如圖3,過(guò)作交于,,,,,,,又;(3)①當(dāng)在延長(zhǎng)線時(shí)(點(diǎn)不與點(diǎn)重合),;理由:如圖4,過(guò)作交于,,,,,,,,又,;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由:如圖5,過(guò)作交于,,,,,,,,又.【點(diǎn)睛】本題考查了平行線的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力,解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯(cuò)角以及同旁內(nèi)角.13.如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(-3,2).(1)直接寫(xiě)出點(diǎn)E的坐標(biāo);D的坐標(biāo)(3)點(diǎn)P是線段CE上一動(dòng)點(diǎn),設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,確定x,y,z之間的數(shù)量關(guān)系,并證明你的結(jié)論.解析:(1)(-2,0);(-3,0);(2)z=x+y.證明見(jiàn)解析.【分析】(1)依據(jù)平移的性質(zhì)可知BC∥x軸,BC=AE=3,然后依據(jù)點(diǎn)A和點(diǎn)C的坐標(biāo)可得到點(diǎn)E和點(diǎn)D的坐標(biāo);(2過(guò)點(diǎn)P作PF∥BC交AB于點(diǎn)F,則PF∥AD,然后依據(jù)平行線的性質(zhì)可得到∠BPF=∠CBP=x°,∠APF=∠DAP=y°,最后,再依據(jù)角的和差關(guān)系進(jìn)行解答即可.【詳解】解:(1)∵將三角形OAB沿x軸負(fù)方向平移,∴BC∥x軸,BC=AE=3.∵C(-3,2),A(1,0),∴E(-2,0),D(-3,0).故答案為:(-2,0);(-3,0).(2)z=x+y.證明如下:如圖,過(guò)點(diǎn)P作PF∥BC交AB于點(diǎn)F,則PF∥AD,∴∠BPF=∠CBP=x°,∠APF=∠DAP=y°,∴∠BPA=∠BPF+∠APF=x°+y°=z°,∴z=x+y.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了點(diǎn)的坐標(biāo)的特點(diǎn),平移得性質(zhì),平面坐標(biāo)系中點(diǎn)的坐標(biāo)和距離的關(guān)系,解本題的關(guān)鍵是由線段和部分點(diǎn)的坐標(biāo),得出其它點(diǎn)的坐標(biāo).14.已知:直線AB∥CD,直線MN分別交AB、CD于點(diǎn)E、F,作射線EG平分∠BEF交CD于G,過(guò)點(diǎn)F作FH⊥MN交EG于H.(1)當(dāng)點(diǎn)H在線段EG上時(shí),如圖1①當(dāng)∠BEG=時(shí),則∠HFG=.②猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.(2)當(dāng)點(diǎn)H在線段EG的延長(zhǎng)線上時(shí),請(qǐng)先在圖2中補(bǔ)全圖形,猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.解析:(1)①18°;②2∠BEG+∠HFG=90°,證明見(jiàn)解析;(2)2∠BEG-∠HFG=90°證明見(jiàn)解析部【分析】(1)①證明2∠BEG+∠HFG=90°,可得結(jié)論.②利用平行線的性質(zhì)證明即可.(2)如圖2中,結(jié)論:2∠BE
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 3D打印藥物緩釋植入體的釋放動(dòng)力學(xué)研究
- 3D打印技術(shù)在神經(jīng)內(nèi)鏡手術(shù)中的應(yīng)用
- 2025年成都紡織高等??茖W(xué)校公開(kāi)招聘電氣工程師工作人員的備考題庫(kù)及1套完整答案詳解
- 2025年晉江市博物館公開(kāi)招聘編外人員的備考題庫(kù)有答案詳解
- 漸變風(fēng)粉紫品牌推廣總結(jié)及未來(lái)規(guī)劃
- 2025年西安市浐灞第一幼兒園招聘?jìng)淇碱}庫(kù)完整參考答案詳解
- 安鋼總醫(yī)院2026年度招聘25人備考題庫(kù)有答案詳解
- 外研版三起四年級(jí)下冊(cè)Review of Module 6課件2
- 《繪本閱讀在小學(xué)低年級(jí)語(yǔ)文教學(xué)中的多元文化教育策略》教學(xué)研究課題報(bào)告
- 2025年貴陽(yáng)市白云區(qū)招聘數(shù)據(jù)標(biāo)注等崗70人+備考題庫(kù)帶薪培訓(xùn)備考題庫(kù)五險(xiǎn)一金備考題庫(kù)及1套參考答案詳解
- 2025年重慶青年職業(yè)技術(shù)學(xué)院非編合同制工作人員招聘68人備考題庫(kù)及一套答案詳解
- 2025年常熟市交通產(chǎn)業(yè)投資集團(tuán)有限公司(系統(tǒng))招聘14人備考題庫(kù)含答案詳解
- 云南省昭通市2024-2025學(xué)年七年級(jí)上學(xué)期期末歷史試題(含答案)
- 水泥供應(yīng)、運(yùn)輸、售后服務(wù)方案
- 澳洲10計(jì)劃教程
- 校園小品《我的未來(lái)不是夢(mèng)》劇本
- 2024稅務(wù)代理合同協(xié)議原件
- 江蘇自考現(xiàn)代企業(yè)經(jīng)營(yíng)管理-練習(xí)題(附答案)27875
- 電力建設(shè)施工技術(shù)規(guī)范 第5部分:管道及系統(tǒng)-DLT 5190.5
- 四川省宜賓市2023-2024學(xué)年高二物理第一學(xué)期期末聯(lián)考試題含解析
- 玻璃隔墻拆除施工方案
評(píng)論
0/150
提交評(píng)論