難點詳解人教版8年級數學上冊《軸對稱》綜合訓練試題(含答案解析)_第1頁
難點詳解人教版8年級數學上冊《軸對稱》綜合訓練試題(含答案解析)_第2頁
難點詳解人教版8年級數學上冊《軸對稱》綜合訓練試題(含答案解析)_第3頁
難點詳解人教版8年級數學上冊《軸對稱》綜合訓練試題(含答案解析)_第4頁
難點詳解人教版8年級數學上冊《軸對稱》綜合訓練試題(含答案解析)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數學上冊《軸對稱》綜合訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在中,DE是AC的垂直平分線,,的周長為13cm,則的周長為(

)A.16cm B.13cm C.19cm D.10cm2、如圖,△ABC中,AB=AC,DE是AB的垂直平分線交AB于點E,交AC于點D,連接BD;若BD⊥AC,則∠CBD的度數是(

)A.22° B.22.5° C.24° D.24.5°3、等腰三角形兩邊長為3,6,則第三邊的長是(

)A.3 B.6 C. D.3或64、若等腰三角形的一個外角度數為100°,則該等腰三角形頂角的度數為()A.80° B.100° C.20°或100° D.20°或80°5、永州市教育部門高度重視校園安全教育,要求各級各類學校從認識安全警告標志入手開展安全教育.下列安全圖標不是軸對稱的是(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,等邊三角形紙片ABC的邊長為6,E,F是邊BC上的三等分點.分別過點E,F沿著平行于BA,CA方向各剪一刀,則剪下的△DEF的周長是_____.2、如圖,在中,,點在延長線上,于點,交于點,若,,則的長度為______.3、如圖,已知O為△ABC三邊垂直平分線的交點,且∠A=50°,則∠BOC的度數為_____度.4、內部有一點P,,點P關于的對稱點為M,點P關于的對稱點為N,若,則的周長為___________.5、點P關于x軸對稱點是,點P關于y軸對稱點是,則__________.三、解答題(5小題,每小題10分,共計50分)1、如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.(1)求∠F的度數;(2)若CD=2,求DF的長.2、如圖,牧馬人從A地出發(fā),先到草地邊某一處牧馬,再到河邊飲馬,然后回到B處,請畫出最短路徑.3、如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點D,E.(1)求證:AE=2CE;(2)連接CD,請判斷△BCD的形狀,并說明理由.4、如圖,在中,.點是中點,點為邊上一點,連接,以為邊在的左側作等邊三角形,連接.(1)的形狀為______;(2)隨著點位置的變化,的度數是否變化?并結合圖說明你的理由;(3)當點落在邊上時,若,請直接寫出的長.5、如圖,AD是△ABC的中線,點E在AD上,且BE=AC,求證:∠BED=∠CAD.-參考答案-一、單選題1、C【解析】【分析】根據線段垂直平分線性質得出,求出AC和的長,即可求出答案.【詳解】解:∵DE是AC的垂直平分線,,∴,,∵的周長為13cm,∴,∴,∴的周長為,故選:C.【考點】考查垂直平分線的性質,三角形周長問題,解題的關鍵是掌握垂直平分線的性質.2、B【解析】【分析】先利用線段垂直平分線的性質、等腰三角形的性質求得∠A、∠ABD、∠ABC,最后利用三角形內角和定理求解即可.【詳解】解:∵BD⊥AC,DE是AB的垂直平分線,∴∠ADB=90°,DA=DB,∴∠A=∠ABD=45°,∵AB=AC,∴∠ABC=∠ACB=67.5°,∴∠CBD=∠ABC-∠ABD=67.5°-45°=22.5°,.故選B.【考點】本題主要考查了線段垂直平分線、等腰三角形的性質、三角形內角和定理等知識點,明確題意、靈活應用相關知識點成為解答本題的關鍵.3、B【解析】【分析】題目給出等腰三角形有兩條邊長為3和6,而沒有明確腰、底分別是多少,所以要進行討論,還要應用三角形的三邊關系驗證能否組成三角形.【詳解】由等腰三角形的概念,得第三邊的長可能為3或6,當第三邊是3時,而3+3=6,所以應舍去;則第三邊長為6.故選B.【考點】此題考查等腰三角形的性質和三角形的三邊關系解題關鍵在于已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答.4、D【解析】【分析】根據等腰三角形兩底角相等,三角形內角和定理,分兩種情況進行討論,當頂角的外角等于100°,當底角的外角等于100°,即可求得答案.【詳解】①若頂角的外角等于100°,那么頂角等于80°,兩個底角都等于50°;②若底角的外角等于100°,那么底角等于80°,頂角等于20°.故選:D.【考點】本題主要考查了外角的定義、等腰三角形的性質以及三角形內角和的相關知識,注意分類討論是解題的關鍵.5、D【解析】【分析】根據軸對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,故本選項不合題意;B、是軸對稱圖形,故本選項不合題意;C、是軸對稱圖形,故本選項不合題意;D、不是軸對稱圖形,故本選項符合題意.故選:D.【考點】本題考查了軸對稱圖形的概念,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.二、填空題1、CE=故答案為6.【考點】本題主要考查全等三角形的性質與判定及等腰三角形的性質與判定,熟練掌握全等三角形的判定方法及等腰三角形的性質與判定是解題的關鍵.6.6【解析】【分析】先說明△DEF是等邊三角形,再根據E,F是邊BC上的三等分求出BC的長,最后求周長即可.【詳解】解:∵等邊三角形紙片ABC∴∠B=∠C=60°∵DE∥AB,DF∥AC∴∠DEF=∠DFE=60°∴△DEF是等邊三角形∴DE=EF=DF∵E,F是邊BC上的三等分點,BC=6∴EF=2∴DE=EF=DF=2∴△DEF=DE+EF+DF=6故答案為6.【考點】本題考查了等邊三角形的判定和性質、三等分點的意義,靈活應用等邊三角形的性質是正確解答本題的關鍵.2、4【解析】【分析】根據等邊對等角得出∠B=∠C,再根據EP⊥BC,得出∠C+∠E=90°,∠B+∠BFP=90°,從而得出∠E=∠BFP,再根據對頂角相等得出∠E=∠AFE,最后根據等角對等邊即可得出答案.【詳解】證明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE=3,∴△AEF是等腰三角形.又∵CE=10,∴CA=AB=7,∴BF=AB-AF=7-3=4,故答案為:4.【考點】本題考查了等腰三角形的判定和性質,解題的關鍵是證明∠E=∠AFE,注意等邊對等角,以及等角對等邊的使用.3、100【解析】【分析】連接AO延長交BC于D,根據線段垂直平分線的性質可得OB=OA=OC,再根據等腰三角形的等邊對等角和三角形的外角性質可得∠BOC=2∠A,即可求解.【詳解】解:連接AO延長交BC于D,∵O為△ABC三邊垂直平分線的交點,∴OB=OA=OC,∴∠OBA=∠OAB,∠OCA=∠OAC,∵∠BOD=∠OBA+∠OAB=2∠OAB,∠COD=∠OCA+∠OAC=2∠OAC,∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2∠BAC,∵∠BAC=50°,∴∠BOC=100°.4、15【解析】【分析】根據軸對稱的性質可證∠MON=2∠AOB=60°;再利用OM=ON=OP,即可求出的周長.【詳解】解:根據題意可畫出下圖,∵OA垂直平分PM,OB垂直平分PN.∴∠MOA=∠AOP,∠NOB=∠BOP;OM=OP=ON=5cm.∴∠MON=2∠AOB=60°.∴為等邊三角形?!鱉ON的周長=3×5=15.故答案為:15.【考點】此題考查了軸對稱的性質及相關圖形的周長計算,根據軸對稱的性質得出∠MON=2∠AOB=60°是解題關鍵.5、1【解析】【分析】根據關于坐標軸的對稱點的坐標特征,求出a,b的值,即可求解.【詳解】∵點P關于x軸對稱點是,∴P(a,-2),∵點P關于y軸對稱點是,∴b=-2,a=3,∴1,故答案是:1.【考點】本題主要考查關于坐標軸對稱的點的坐標特征,熟練掌握“關于x軸對稱的兩點,橫坐標相等,縱坐標互為相反數;關于y軸對稱的兩點,橫坐標互為相反數,縱坐標相等”是解題的關鍵.三、解答題1、(1)30°;(2)4.【解析】【分析】(1)根據平行線的性質可得∠EDC=∠B=60°,根據三角形內角和定理即可求解;(2)易證△EDC是等邊三角形,再根據直角三角形的性質即可求解.【詳解】(1)∵△ABC是等邊三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等邊三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【考點】本題主要考查了運用三角形的內角和算出角度,并能判定等邊三角形,會運用含30°角的直角三角形的性質.2、見解析【解析】【分析】作出點A的關于草地的對稱點,點B的關于河岸的對稱點,連接兩個對稱點,交于草地于點Q,交河邊于點P,連接AQ,BP,則AQ+PQ+BP是最短路線.【詳解】如圖所示AQ+PQ+BP為所求.【考點】本題主要考查對稱線段的性質,軸對稱的性質,軸對稱?最短路線問題等知識點的理解和掌握,能正確畫圖和根據畫圖條件進行推理是解此題的關鍵.3、見解析【解析】【分析】(1)連接BE,根據線段垂直平分線的性質可得AE=BE,利用等邊對等角的性質可得∠ABE=∠A;結合三角形外角的性質可得∠BEC的度數,再在Rt△BCE中結合含30°角的直角三角形的性質,即可證明第(1)問的結論;(2)根據直角三角形斜邊中線的性質可得BD=CD,再利用直角三角形銳角互余的性質可得到∠ABC=60°,至此不難判斷△BCD的形狀【詳解】(1)證明:連結BE,如圖.∵DE是AB的垂直平分線,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE.(2)解:△BCD是等邊三角形.理由如下:∵DE垂直平分AB,∴D為AB的中點.∵∠ACB=90°,∴CD=BD.又∵∠ABC=60°,∴△BCD是等邊三角形.【考點】此題考查了線段垂直平分線的性質、30°角的直角三角形的性質,等腰三角形的性質,直角三角形斜邊的中線等于斜邊的一半,等邊三角形的判定,熟練掌握30°角的直角三角形的性質是解(1)的關鍵,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解(2)的關鍵,4、(1)等邊三角形;(2)的度數不變,理由見解析;(3)2【解析】【分析】(1)由、,可得出、,結合點是中點,可得出,進而即可得出為等邊三角形;(2)由(1)可得出,根據可得出,再結合、即可得出,根據全等三角形的性質即可得出,即的度數不變;(3)易證為等腰三角形,由等腰三角形及等邊三角形的性質可得出,進而可得出.【詳解】解:(1)∵在中,,,∴,.∵點是中點,∴,∴為等邊三角形.故答案為等邊三角形.(2)的度數不變,理由如下:∵,點是中點,∴,∴.∵為等邊三角形,∴.又∵為等邊三角形,∴,∴,∴.在和中,,∴,∴,即的度數不變.(3)∵為等邊三角形,∴.∵,∴,∴為等腰三角形,∴,∴.【考點】本題考查了等邊三角形的判定與性質、全等三角形的判定與性質、含度角的直角三角形.勾股定理以及等腰三角形的性質,解題的關鍵是:(1)找出、;(2)利用全等三角形的判定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論