難點解析北師大版9年級數(shù)學上冊期中試卷參考答案詳解_第1頁
難點解析北師大版9年級數(shù)學上冊期中試卷參考答案詳解_第2頁
難點解析北師大版9年級數(shù)學上冊期中試卷參考答案詳解_第3頁
難點解析北師大版9年級數(shù)學上冊期中試卷參考答案詳解_第4頁
難點解析北師大版9年級數(shù)學上冊期中試卷參考答案詳解_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數(shù)學上冊期中試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、如圖,兩個轉盤分別自由轉動一次(當指針恰好指在分界線上時重轉),當停止轉動時,兩個轉盤的指針都指向3的概率為(

)A. B. C. D.2、如圖,在四邊形ABCD中,,且AD=DC,則下列說法:①四邊形ABCD是平行四邊形;②AB=BC;③AC⊥BD;④AC平分∠BAD;⑤若AC=6,BD=8,則四邊形ABCD的面積為24,其中正確的有(

)A.2個 B.3個 C.4個 D.5個3、已知、是一元二次方程的兩個根,則的值是()A.1 B. C. D.4、若一元二次方程有一個解為,則k為(

)A. B.1 C. D.05、如圖,在平面直角坐標系中、四邊形OABC為菱形,O為原點,A點坐標為(8,0),∠AOC=60°,則對角線交點E的坐標為(

)A.(4,2) B.(2,4) C.(2,6) D.(6,2)6、如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=4.點F為射線CB上一動點,過點C作CM⊥AF于M,交AB于E,D是AB的中點,則DM長度的最小值是()A. B. C. D.7、如圖,在矩形ABCD中,AB=5,AD=3,點E為BC上一點,把△CDE沿DE翻折,點C恰好落在AB邊上的F處,則CE的長是(

)A.1 B. C. D.二、多選題(3小題,每小題2分,共計6分)1、用配方法解下列方程,配方錯誤的是(

)A.化為 B.化為C.化為 D.化為2、如圖,分別以點A、B為圓心,同樣長度為半徑作圓弧,兩弧相交于點C、D.連結AC、BC、AD、BD,則四邊形ADBC一定是(

)A.矩形 B.菱形 C.正方形 D.平行四邊形3、如圖,在矩形中,,,點P在線段上以的速度從點B向點C運動,同時,點Q在線段上從點C向D點運動.若某一時刻與全等,則點Q的運動速度為(

)A. B. C. D.第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、如圖,正方形ABCD的邊長為6,點E在邊CD上.以點A為中心,把△ADE順時針旋轉90°至△ABF的位置.若DE=2,則FE=___.2、如圖,在四邊形ABCD中,AC=BD=8,E、F、G、H分別是邊AB、BC、CD、DA的中點,則EG2+FH2的值為_____.3、如圖,四邊形ABCD為菱形,,延長BC到E,在內作射線CM,使得,過點D作,垂足為F.若,則對角線BD的長為______.4、如圖,四邊形ABCD是一個正方形,E是BC延長線上一點,且AC=EC,則∠DAE的度數(shù)為_________.5、若x1,x2是方程x2﹣4x﹣2020=0的兩個實數(shù)根,則代數(shù)式x12﹣2x1+2x2的值等于_____.6、袋中有五顆球,除顏色外全部相同,其中紅色球三顆,標號分別為1,2,3,綠色球兩顆,標號分別為1,2,若從五顆球中任取兩顆,則兩顆球的標號之和不小于4的概率為__.7、如圖,一塊飛鏢游戲板由大小相等的小等邊三角形構成,向游戲板隨機投擲一枚飛鏢(飛鏢每次都落在游戲板上),則擊中黑色區(qū)域的概率是____________.8、一元二次方程的解為__________.9、一個小球在如圖所示的方格地磚上任意滾動,并隨機停留在某塊地磚上.每塊地磚的大小、質地完全相同,那么該小球停留在黑色區(qū)域的概率是___________.10、如圖,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中點,則CD=_____.四、解答題(6小題,每小題10分,共計60分)1、如圖,在矩形中,.動點P從點A開始沿邊以的速度運動,動點Q從點C開始沿邊以的速度運動.點P和點Q分別從點A和點C同時出發(fā),當其中一點到達終點時,另一點也隨之停止運動.設動點的運動時間為,則當t為何值時,四邊形是矩形?2、如圖,在平行四邊形ABCD中,BE⊥AD,BF⊥CD,垂足分別為E,F(xiàn),且AE=CF.(1)求證:平行四邊形ABCD是菱形;(2)若DB=10,AB=13,求平行四邊形ABCD的面積.3、如圖,在矩形ABCD中,AB=12cm,BC=6cm.點P沿AB邊從點A開始向點B以2cm/s的速度移動,點Q沿DA邊從點D開始向點A以1cm/s的速度移動.如果點P,Q同時出發(fā),用t(s)表示移動的時間(0<t<6),那么當t為何值時,△QAP的面積等于8cm2?4、閱讀下面內容,并答題:我們知道,計算n邊形的對角線條數(shù)公式為n(n-3).如果一個n邊形共有20條對角線,那么可以得到方程n(n-3)=20.解得n=8或n=-5(舍去),∴這個n邊形是八邊形.根據(jù)以上內容,問:(1)若一個多邊形共有9條對角線,求這個多邊形的邊數(shù);(2)小明說:“我求得一個n邊形共有10條對角線”,你認為小明同學的說法正確嗎?為什么?5、已知關于x的一元二次方程x2+(2m﹣3)x+m2=0的兩個不相等的實數(shù)根α,β滿足+=1,求m的值.6、如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3BE,P是AC上一動點,連接PE,PB.(1)在AC上找一點P,使△BPE的周長最小(作圖說明);(2)求出△BPE周長的最小值.-參考答案-一、單選題1、A【解析】【分析】首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結果與都指向3的情況數(shù),繼而求得答案.【詳解】解:列表如下:12341234共有16種等可能的結果,兩個轉盤的指針都指向3的只有1種結果,兩個轉盤的指針都指向3的概率為,故選:A.【考點】此題考查了樹狀圖法與列表法求概率.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.2、D【解析】【分析】由,可知四邊形ABCD是平行四邊形,可判斷①的正誤;由AD=DC,可知平行四邊形ABCD是菱形,根據(jù)菱形的性質可判斷②③④⑤的正誤.【詳解】解:∵,∴四邊形ABCD是平行四邊形,故①正確;∵AD=DC,∴平行四邊形ABCD是菱形,∴AB=BC,AC⊥BD,AC平分∠BAD,故②③④正確;∵AC=6,BD=8,∴菱形ABCD的面積=,故⑤正確;∴正確的個數(shù)有5個,故選D.【考點】本題考查了平行四邊形的判定,菱形的判定與性質.解題的關鍵在于證明四邊形ABCD是菱形.3、D【解析】【分析】根據(jù)、是一元二次方程的兩個根得到,再將變形為,然后代入計算即可.【詳解】解:∵、是一元二次方程的兩個根,∴∵,∴,選D.【考點】本題主要考查了一元二次方程的根與系數(shù)的關系:若方程的兩根為、,則,熟記知識點與代數(shù)式變形是解題的關鍵.4、C【解析】【分析】把x=0代入方程(k-1)x2+3x+k2-1=0得方程k2-1=0,解關于k的方程,然后利用一元二次方程的定義確定k的值.【詳解】把x=0代入方程(k-1)x2+3x+k2-1=0得方程:k2-1=0,解得k1=1,k2=-1,而k-1≠0,所以k=-1.故選:C.【考點】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.5、D【解析】【分析】過點E作EF⊥x軸于點F,由直角三角形的性質求出EF長和OF長即可.【詳解】解:過點E作EF⊥x軸于點F,∵四邊形OABC為菱形,∠AOC=60°,∴∠AOE=∠AOC=30°,OB⊥AC,∠FAE=60°,∴∠AEF=30°∵A(8,0),∴AO=8,∴AE=AO=×8=4,∴AF=AE=2,,∴OF=AO?AF=8?2=6,∴.故選:D【考點】本題考查了菱形的性質、勾股定理及含30°直角三角形的性質,正確作出輔助線是解題的關鍵.6、C【解析】【分析】如圖,取AC的中點T,連接DT,MT.利用三角形的中位線定理求出DT,利用直角三角形的中線的性質求出MT,再根據(jù)DM≥MT-DT,可得結論.【詳解】解:如圖,取AC的中點T,連接DT,MT.∵AD=DB,AT=TC,∴DT=BC=2,∵CE⊥AF,∴∠AMC=90°,∴TM=AC=3,∴點M的運動軌跡是以T為圓心,TM為半徑的圓,∴DM≥TM-DT=3-2=1,∴DM的最小值為1,故選:C.【考點】本題考查了三角形中位線定理,直角三角形斜邊中線的性質等知識,解題的關鍵是學會添加常用輔助線,構造三角形中位線,直角三角形斜邊中線解決問題.7、D【解析】【分析】設CE=x,則BE=3-x由折疊性質可知,EF=CE=x,DF=CD=AB=5,所以AF=4,BF=AB-AF=5-4=1,在Rt△BEF中,由勾股定理得(3-x)2+12=x2,解得x的值即可.【詳解】解:設CE=x,則BE=3-x,由折疊性質可知,EF=CE=x,DF=CD=AB=5在Rt△DAF中,AD=3,DF=5,∴AF=,∴BF=AB-AF=5-4=1,在Rt△BEF中,BE2+BF2=EF2,即(3-x)2+12=x2,解得x=,故選:D.【考點】本題考查了與矩形有關的折疊問題,熟練掌握矩形的性質以及勾股定理是解題的關鍵.二、多選題1、BD【解析】【分析】根據(jù)配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1,(3)等式兩邊同時加上一次項系數(shù)一半的平方即可得到結論.【詳解】A.化為,正確,不符合題意;B.化為,錯誤,符合題意;C.化為,正確,不符合題意;D.化為,錯誤,符合題意.故選:BD.【考點】此題考查了配方法解一元二次方程,屬于基礎題,熟練掌握配方法的一般步驟是解題關鍵.2、BD【解析】【分析】根據(jù)四邊相等的四邊形是菱形即可判斷.【詳解】解:由作圖可知:AC=AD=BC=BD,∴四邊形ADBC是菱形且為平行四邊形,故選:BD.【考點】本題考查基本作圖,平行四邊形的判定,菱形的判定等知識,解題的關鍵是熟練掌握五種基本作圖,屬于中考??碱}型.3、AD【解析】【分析】設Q的速度為xcm/s,運動時間為ts時,△ABP與△PCQ全等,則,,,由矩形的性質可知∠B=∠C=90°,則只有△ABP≌△PCQ和△ABP≌△QCP這兩種情況,然后利用全等三角形的性質進行求解即可.【詳解】解:設Q的速度為xcm/s,運動時間為ts時,△ABP與△PCQ全等,∴,,,∵四邊形ABCD是矩形,∴∠B=∠C=90°,當△ABP≌△PCQ時,AB=CP,BP=CQ,∴,解得;當△ABP≌△QCP時,AB=QC,BP=CP,∴,解得∴Q的速度為4cm/或,故選AD..【考點】本題主要考查了矩形的性質,全等三角形的性質,解題的關鍵在于能夠熟練掌握相關知識進行求解.三、填空題1、【解析】【分析】由旋轉的性質可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【詳解】解:∵把△ADE順時針旋轉90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴點F,點B,點C共線,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根據(jù)勾股定理得:EF=,故答案為:.【考點】本題考查了旋轉的性質,正方形的性質,勾股定理,靈活運用這些性質解決問題是本題的關鍵.2、64【解析】【分析】連接HE、EF、FG、GH,根據(jù)三角形中位線定理、菱形的判定定理得到平行四邊形HEFG是菱形,根據(jù)菱形的性質、勾股定理計算即可.【詳解】解:連接HE、EF、FG、GH,∵E、F分別是邊AB、BC的中點,∴EF=AC=4,EF∥AC,同理可得,HG=AC=4,HG∥AC,EH=BD=4,∴HG=EF,HG∥EF,∴四邊形HEFG為平行四邊形,∵AC=BD,∴EH=EF,∴平行四邊形HEFG是菱形,∴HF⊥EG,HF=2OH,EG=2OE,∴OE2+OH2=EH2=16∴EG2+FH2=(2OE)2+(2OH)2=4(OE2+OH2)=64,故答案為64.【考點】本題考查的是中點四邊形,掌握三角形中位線定理、菱形的判定和性質定理是解題的關鍵.3、【解析】【分析】連接AC交BD于H,證明DCH≌DCF,得出DH的長度,再根據(jù)菱形的性質得出BD的長度.【詳解】解:如圖,連接AC交BD于點H,由菱形的性質得∠BDC=35,∠DCE=70,又∵∠MCE=15,∴∠DCF=55,∵DF⊥CM,∴∠CDF=35,又∵四邊形ABCD是菱形,∴BD平分∠ADC,∴∠HDC=35,在CDH和CDF中,∴CDH≌CDF(AAS),∴,∴DB=,故答案為.【考點】本題主要考查菱形的性質和全等三角形的判定,菱形的對角線互相平分是此題的關鍵知識點,得出∠HDC=∠FDC是這個題最關鍵的一點.4、22.5°【解析】【分析】由四邊形ABCD是一個正方形,根據(jù)正方形的性質,可得∠ACB=45°,又由AC=EC,根據(jù)等邊對等角,可得∠E=∠CAE,繼而根據(jù)等腰三角形的性質和三角形的內角和求得∠EAC的度數(shù),進一步即可求得∠DAE的度數(shù).【詳解】解:∵四邊形是正方形,∴,∴,又∵,∴,則.故答案為:22.5°【考點】此題考查了正方形的性質以及等腰三角形的性質.此題比較簡單,注意掌握數(shù)形結合思想的應用.5、2028【解析】【分析】根據(jù)一元二次方程的解的概念和根與系數(shù)的關系得出x12-4x1=2020,x1+x2=4,代入原式=x12-4x1+2x1+2x2=x12-4x1+2(x1+x2)計算可得.【詳解】解:∵x1,x2是方程x2﹣4x﹣2020=0的兩個實數(shù)根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,則原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=2028,故答案為:2028.【考點】本題主要考查根與系數(shù)的關系,解題的關鍵是掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=,x1x2=.6、##0.5【解析】【分析】畫樹狀圖,共有20個等可能的結果,兩顆球的標號之和不小于4的結果有10個,再由概率公式求解即可.【詳解】畫樹狀圖如圖:共有20個等可能的結果,兩顆球的標號之和不小于4的結果有10個,兩顆球的標號之和不小于4的概率為,故答案為:.【考點】本題考查了列表法與樹狀圖法以及概率公式,正確畫出樹狀圖是解題的關鍵.7、【解析】【分析】根據(jù)幾何概率的求法:飛鏢落在陰影部分的概率就是陰影區(qū)域的面積與總面積的比值.【詳解】解:∵總面積為9個小等邊形的面積,其中陰影部分面積為3個小等邊形的面積,∴飛鏢落在陰影部分的概率是=,故答案為:.【考點】本題主要考查了概率求解問題,準確分析計算是解題的關鍵.8、x=或x=2【解析】【分析】根據(jù)一元二次方程的解法解出答案即可.【詳解】當x-2=0時,x=2,當x-2≠0時,4x=1,x=,故答案為:x=或x=2.【考點】本題考查解一元二次方程,本題關鍵在于分情況討論.9、【解析】【分析】先求出黑色方磚在整個地面中所占的比值,再根據(jù)其比值即可得出結論.【詳解】解:∵由圖可知,黑色方磚6塊,共有16塊方磚,∴黑色方磚在整個區(qū)域中所占的比值=,∴小球停在黑色區(qū)域的概率是;故答案為:【考點】本題考查的是幾何概率,用到的知識點為:幾何概率=相應的面積與總面積之比.10、3【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】∵∠ACB=90°,D為AB的中點,∴CD=AB=×6=3.故答案為3.【考點】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,熟記性質是解題的關鍵.四、解答題1、【解析】【分析】如圖,根據(jù)題意表示出AP=4t,DQ=20-t;根據(jù)矩形的對邊相等,求出t的值,即可解決問題.【詳解】解:由題意得:AP=4t,DQ=20-t;∵四邊形APQD是矩形,∴AP=DQ,即4t=20-t,解得:t=4(s).即當t=4s時,四邊形APQD是矩形.【考點】該題主要考查了矩形的判定及其性質的應用問題;解題的一般策略是靈活運用矩形的性質來分析、判斷、解答.2、(1)見解析(2)120【解析】【分析】(1)根據(jù)平行四邊形的性質可得,利用全等三角形的判定和性質得出,,依據(jù)菱形的判定定理(一組鄰邊相等的平行四邊形的菱形)即可證明;(2)連接AC,交BD于點H,利用菱形的性質及勾股定理可得,再根據(jù)菱形的面積公式求解即可得.(1)證明:∵四邊形ABCD是平行四邊形,∴,∵,,∴,在和中,,∴,∴,∴平行四邊形ABCD是菱形;(2)解:如圖所示:連接AC,交BD于點H,∵四邊形ABCD是菱形,∴,∵,,∴,在中,,∴,∴平行四邊形ABCD的面積為:.【考點】題目主要考查平行四邊形的性質,全等三角形的判定和性質,菱形的判定和性質及其面積公式,勾股定理等,理解題意,熟練掌握各個性質定理是解題關鍵.3、當t為2或4時,△QAP的面積等于8cm2.【解析】【分析】當運動時間為ts時,AP=2tcm,AQ=(6?t)cm,利用三角形的面積計算公式,結合△QAP的面積等于8cm2,即可得出關于t的一元二次方程,解之即可得出t的值.【詳解】解:當運動時間為ts時,AP=2tcm,AQ=(6-t)cm,依題意得×2t(6-t)=8,整理得t2-6t+8=0,解得t1=2,t2=4,∴當t為2或4時,△QAP的面積等于8cm2.【考點】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.4、(1)6(2)錯誤,理由見解析【解析】【分析】(1)利用題中給出的對角線條數(shù)公式即可求解;(2)利用題中給出的對角線條數(shù)公式列出一元二次方程,求解方程的根,根據(jù)方程是否有正整數(shù)解來判斷即可.(1)設這個多邊形的邊數(shù)是n,則n(n-3)=9,解得n=6或n=-3(舍去).∴這個多邊形的邊數(shù)是6;(2)小明同學的說法是不正確的,理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論