版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省楚雄市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,直線l1∥l2,線段AB交l1,l2于D,B兩點(diǎn),過點(diǎn)A作AC⊥AB,交直線l1于點(diǎn)C,若∠1=15,則∠2=()A.95 B.105 C.115 D.1252、如圖,把沿線段折疊,使點(diǎn)落在點(diǎn)處;若,,,則的度數(shù)為(
)A. B. C. D.3、如圖,已知△ABC中,BD、CE分別是邊AC、AB上的高,BD與CE交于O點(diǎn),如果設(shè)∠BAC=n°,那么用含n的代數(shù)式表示∠BOC的度數(shù)是()A.45°+n° B.90°﹣n° C.90°+n° D.180°﹣n°4、下面是投影屏上出示的搶答題,需要回答橫線上符號(hào)代表的內(nèi)容.則回答正確的是()已知:如圖,∠BEC=∠B+∠C.求證:AB∥CD.證明:延長BE交※于點(diǎn)F,則∠BEC=180°﹣∠FEC=◎+∠C.又∠BEC=∠B+∠C,得∠B=▲.故AB∥CD(@相等,兩直線平行).A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB5、將一個(gè)直角三角板和一把直尺按如圖所示的方式擺放,若∠2=55°,則∠1的度數(shù)為(
)A.45° B.55° C.25° D.35°6、下列圖形中,由AB∥CD,能得到∠1=∠2的是(
)A. B.C. D.7、如圖,在△ABC中,∠C=90°,點(diǎn)D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°8、如圖,∠B=∠C,則∠ADC與∠AEB的大小關(guān)系是(
)A.∠ADC>∠AEB B.∠ADC<∠AEBC.∠ADC=∠AEB D.大小關(guān)系不確定第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,△ABC的外角∠DBC、∠ECB的角平分線交于點(diǎn)M,∠ACB的角平分線與BM的反向延長線交于點(diǎn)N,若在△CMN中存在一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,則∠A的度數(shù)為_______2、如圖,點(diǎn)O是△ABC的三條角平分線的交點(diǎn),連結(jié)AO并延長交BC于點(diǎn)D,BM、CM分別平分∠ABC和∠ACB的外角,直線MC和直線BO交于點(diǎn)N,OH⊥BC于點(diǎn)H,有下列結(jié)論:①∠BOC+∠BMC=180°;②∠N=∠DOH;③∠BOD=∠COH;④若∠CBA=∠CAB,則MN∥AB;其中正確的有_____.(填序號(hào))3、如圖,在中,,將沿直線m翻折,點(diǎn)B落在點(diǎn)D的位置,則__________.4、如圖,將三角形紙片ABC沿EF折疊,使得A點(diǎn)落在BC上點(diǎn)D處,連接DE,DF,.設(shè),,則α與β之間的數(shù)量關(guān)系是________.5、如圖,在△ABC中,AD平分∠BAC,如果∠B=80°,∠C=40°,那么∠ADC的度數(shù)等于_____.6、兩條直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果___________,那么這兩條直線平行.這個(gè)判定方法可簡(jiǎn)述為:_________,兩直線平行.7、如圖,給出下列條件:①;②;③;④;⑤.其中,一定能判定∥的條件有_____________(填寫所有正確的序號(hào)).三、解答題(7小題,每小題10分,共計(jì)70分)1、用兩種方法證明“三角形的外角和等于360°”.已知:如圖,∠BAE,∠CBF,∠ACD是△ABC的三個(gè)外角.求證:∠BAE+∠CBF+∠ACD=360°.證法1:∵_(dá)_______________________________________________________________,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).∵_(dá)_____________,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.請(qǐng)把證法1補(bǔ)充完整,并用不同的方法完成證法2.2、已知:如圖,點(diǎn)B、C在線段AD的異側(cè),點(diǎn)E、F分別是線段AB、CD上的點(diǎn),∠AEG=∠AGE,∠C=∠DGC.(1)求證:AB//CD;(2)若∠AGE+∠AHF=180°,求證:∠B=∠C;(3)在(2)的條件下,若∠BFC=4∠C,求∠D的度數(shù).3、用反證法證明:一個(gè)三角形中不能有兩個(gè)角是直角.4、如圖,點(diǎn)A在MN上,點(diǎn)B在PQ上,連接AB,過點(diǎn)A作交PQ于點(diǎn)C,過點(diǎn)B作BD平分∠ABC交AC于點(diǎn)D,且.(1)求證:;(2)若,求∠ADB的度數(shù).5、如圖,已知AB⊥BC,BC⊥CD,.求證:BE∥CF6、如圖,在△ABC中,D是BC邊上的一點(diǎn),AB=DB,BE平分∠ABC,交AC邊于點(diǎn)E,連接DE.(1)求證:△ABE≌△DBE,(2)若∠A=100°,∠C=50°,求∠AEB的度數(shù).7、已知:如圖,點(diǎn)在上,且.求證:.
-參考答案-一、單選題1、B【解析】【分析】利用垂直定義和三角形內(nèi)角和定理計(jì)算出∠ADC的度數(shù),再利用平行線的性質(zhì)可得∠3的度數(shù),再根據(jù)鄰補(bǔ)角的性質(zhì)可得答案.【詳解】解:∵AC⊥AB,∴∠A=90,∵∠1=15,∴∠ADC=180-90-15=75,∵l1∥l2,∴∠3=∠ADC=75,∴∠2=180-75=105,故選:B.【考點(diǎn)】此題主要運(yùn)用垂直定義、三角形內(nèi)角和定理以及平行線的性質(zhì),解決角之間的關(guān)系,本題關(guān)鍵是掌握兩直線平行,同位角相等.2、C【解析】【分析】由于折疊,可得三角形全等,運(yùn)用三角形全等得出,利用平行線的性質(zhì)可得出則即可求.【詳解】解:∵沿線段折疊,使點(diǎn)落在點(diǎn)處,∴,∴,∵,,∴,∵,∴,∴,故選:C.【考點(diǎn)】本題考查了全等三角形的性質(zhì)及三角形內(nèi)角和定理、平行線的性質(zhì);解題的關(guān)鍵是,理解折疊就是得到全等的三角形,根據(jù)全等三角形的對(duì)應(yīng)角相等就可以解決.3、D【解析】【分析】由垂直的定義得到∠ADB=∠BDC=90,再根據(jù)三角形內(nèi)角和定理得∠ABD=180﹣∠ADB﹣∠A=90﹣n,然后根據(jù)三角形的外角性質(zhì)有∠BOC=∠EBD+∠BEO,計(jì)算即可得到∠BOC的度數(shù).【詳解】解:∵BD、CE分別是邊AC,AB上的高,∴∠ADB=∠BDC=90,又∵∠BAC=n,∴∠ABD=180°﹣∠ADB﹣∠A=180﹣90﹣n=90﹣n,∴∠BOC=∠EBD+∠BEO=90°﹣n+90°=180﹣n.故選:D.【考點(diǎn)】本題考查了三角形的外角性質(zhì),垂直的定義以及三角形內(nèi)角和定理,掌握以上性質(zhì)定理是解答本題的關(guān)鍵.4、C【解析】【分析】利用鄰補(bǔ)角的概念、等量代換及平行線的判定求解可得.【詳解】證明:延長交于點(diǎn),則.又,得.故(內(nèi)錯(cuò)角相等,兩直線平行).所以※代表,◎代表,▲代表,代表內(nèi)錯(cuò)角,故選:.【考點(diǎn)】本題主要考查平行線的判定,解題的關(guān)鍵是掌握鄰補(bǔ)角的概念、等量代換及平行線的判定.5、D【解析】【分析】先對(duì)圖形標(biāo)注,再根據(jù)平行線的性質(zhì)得∠1=∠4,然后根據(jù)直角三角形兩個(gè)銳角互余及對(duì)頂角相等得出答案.【詳解】如圖,∵,∴∠1=∠4(兩直線平行,內(nèi)錯(cuò)角相等).∵∠2=∠3(對(duì)頂角相等),∴∠1+∠2=∠3+∠4=90°,∴∠1=90°﹣∠2=35°.故選:D.【考點(diǎn)】本題考查平行線的性質(zhì)及三角形內(nèi)角和定理,靈活得選擇平行線的性質(zhì)是解題的關(guān)鍵.6、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)逐項(xiàng)判斷即可.【詳解】A、∵AB//CD,∴∠1+∠2=180°.故本選項(xiàng)不符合題意;B、如圖,∵AB//CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本選項(xiàng)正確.C、∵AB//CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本選項(xiàng)不符合題意;D、當(dāng)梯形ABDC是等腰梯形時(shí)才有,∠1=∠2.故本選項(xiàng)不符合題意.故選:B.【考點(diǎn)】本題考查平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解答的關(guān)鍵.7、D【解析】【分析】根據(jù)鄰補(bǔ)角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點(diǎn)】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.8、C【解析】【分析】首先在△ADC中有內(nèi)角和為180°,即∠A+∠C+∠ADC=180°,在△AEB中有內(nèi)角和為180°,即∠AEB+∠A+∠B=180°,又知∠B=∠C,故可得∠AEB=∠ADC.【詳解】在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴∠ADC=∠AEB.故選C.【考點(diǎn)】本題主要考查三角形內(nèi)角和定理的應(yīng)用,利用了三角形內(nèi)角和為180度,此題難度不大.二、填空題1、或或【解析】【分析】根據(jù),的角平分線交于點(diǎn),可求得,延長至,根據(jù)為的外角的角平分線,可得是的外角的平分線,根據(jù)平分,得到,則有,可得,可求得;再根據(jù),分四種情況:①;②;③;④,分別討論求解即可.【詳解】解:外角,的角平分線交于點(diǎn),∴;如圖示,延長至,為的外角的角平分線,是的外角的平分線,,平分,,,,即,又,∴,即;;如果中,存在一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,那么分四種情況:①,則,;②,則,,;③,則,解得;④,則,解得.綜上所述,的度數(shù)是或或.【考點(diǎn)】本題是三角形綜合題,考查了三角形內(nèi)角和定理、外角的性質(zhì),角平分線定義等知識(shí);靈活運(yùn)用三角形的內(nèi)角和定理、外角的性質(zhì)進(jìn)行分類討論是解題的關(guān)鍵.2、①③④【解析】【分析】由平分可知:①∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,即∠OBM=90°,∠OCM=90°,可知∠BOC+∠BMC=180°;②利用外角定理,角平分線性質(zhì)進(jìn)行計(jì)算分析即可;③根據(jù)∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,可知∠BOD=∠COH;④若∠CBA=∠CAB,則∠1=∠2=∠BAC,由于∠N=∠BAC,可知∠1=∠N,即MN∥AB.【詳解】解:如圖所示,延長AC與E,∵點(diǎn)O是△ABC的三條角平分線的交點(diǎn),BM、CM分別平分∠ABC和∠ACB的外角,∴∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∴∠2+∠3=∠OBM=90°,∠6+∠7=∠OCM=90°,∵∠OBM+∠OCM+∠BOC+∠BMC=360°,∴∠BOC+∠BMC=180°,故①正確;∵BN平分∠ABC,CM平分∠BCE,∠N+∠2=∠7,∴∠N=∠7﹣∠2=∠BCE﹣∠ABC,∵∠BCE=∠ABC+∠BAC,∴∠N=∠BAC,∵∠ODH=∠BAD+∠ABC=∠BAC+∠ABC,OH⊥BC,∴∠DOH=90°﹣∠ODH=90°﹣∠BAC﹣∠ABC,∵∠ABC+∠BAC≠90°,∴90°﹣∠BAC﹣∠ABC≠∠BAC,∴∠N≠∠DOH,故②錯(cuò)誤;∵∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,∴∠BOD=∠COH,故③正確;∵∠CBA=∠CAB,∴∠1=∠2=∠BAC,∵∠N=∠BAC,∴∠1=∠N,∴MN∥AB,故④正確,故答案為:①③④.【考點(diǎn)】本題主要考查的是三角形與角平分線的綜合運(yùn)用,熟練掌握角平分線的性質(zhì)是解題的關(guān)鍵.3、【解析】【分析】根據(jù)折疊得出∠D=∠B=28°,根據(jù)三角形的外角性質(zhì)得出∠1=∠B+∠BEF,∠BEF=∠2+∠D,求出∠1=∠B+∠2+∠D即可.【詳解】解:如圖,∵∠B=28°,將△ABC沿直線m翻折,點(diǎn)B落在點(diǎn)D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1-∠2=∠B+∠D=28°+28°=56°,故答案為:.【考點(diǎn)】本題考查了三角形的外角性質(zhì)和折疊的性質(zhì),能熟記三角形的外角性質(zhì)是解此題的關(guān)鍵,注意:三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.4、【解析】【分析】由折疊的性質(zhì)可知:,再利用三角形內(nèi)角和定理及角之間的關(guān)系證明,,即可找出α與β之間的數(shù)量關(guān)系.【詳解】解:由折疊的性質(zhì)可知:,∵,∴,∴,∵,,∴,∴,故答案為:.【考點(diǎn)】本題考查折疊的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵是根據(jù)折疊的性質(zhì)求出,根據(jù)角之間的關(guān)系求出,.5、110°##110度【解析】【分析】由三角形的內(nèi)角和可求得∠BAC=60°,再由角平分線的定義得∠BAD=30°,利用三角形的外角性質(zhì)即可求∠ADC的度數(shù).【詳解】解:∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=110°.故答案為:110°.【考點(diǎn)】本題主要考查三角形的外角性質(zhì),三角形的內(nèi)角和定理,角平分線的定義,解答的關(guān)鍵是對(duì)相應(yīng)的知識(shí)的掌握.6、
同位角相等(答案不唯一)
同位角相等(答案不唯一)【解析】【分析】根據(jù)平行線的判定定理解答即可.【詳解】?jī)蓷l直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行.這個(gè)判定方法可簡(jiǎn)述為:同位角相等,兩直線平行.故答案為:同位角相等,同位角相等.【考點(diǎn)】本題主要考查平行線的判定定理,屬于基礎(chǔ)題,熟練掌握平行線的判定定理是解題關(guān)鍵.7、①③④【解析】【分析】根據(jù)平行線的判定方法對(duì)各小題判斷即可解答.【詳解】①∵,∴∥(同旁內(nèi)角互補(bǔ),兩直線平行),正確;②∵,∴∥,錯(cuò)誤;③∵,∴∥(內(nèi)錯(cuò)角相等,兩直線平行),正確;④∵,∴∥(同位角相等,兩直線平行),正確;⑤不能證明∥,錯(cuò)誤,故答案為:①③④.【考點(diǎn)】本題考查了平行線的判定,熟練掌握平行線的判定方法是解答的關(guān)鍵.三、解答題1、證法1:平角等于180°;∠1+∠2+∠3=180°;證法二見解析【解析】【詳解】試題分析:證法1:根據(jù)平角的定義得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根據(jù)三角形內(nèi)角和定理和角的和差關(guān)系即可得到結(jié)論;證法2:要求證∠BAE+∠CBF+∠ACD=360°,根據(jù)三角形外角性質(zhì)得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,則∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根據(jù)三角形內(nèi)角和定理即可得到結(jié)論.試題解析:證法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.證法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.2、(1)見解析;(2)見解析;(3)108°【解析】【分析】(1)根據(jù)對(duì)頂角相等結(jié)合已知條件得出∠AEG=∠C,根據(jù)內(nèi)錯(cuò)角相等兩直線平行即可證得結(jié)論;(2)由∠AGE+∠AHF=180°等量代換得∠DGC+∠AHF=180°可判斷EC//BF,兩直線平行同位角相等得出∠B=∠AEG,結(jié)合(1)得出結(jié)論;(3)由(2)證得EC//BF,得∠BFC+∠C=180°,求得∠C的度數(shù),由三角形內(nèi)角和定理求得∠D的度數(shù).【詳解】證明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC∴∠AEG=∠C
∴AB//CD(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°∴∠DGC+∠AHF=180°∴EC//BF
∴∠B=∠AEG由(1)得∠AEG=∠C
∴∠B=∠C(3)由(2)得EC//BF∴∠BFC+∠C=180°∵∠BFC=4∠C
∴∠C=36°
∴∠DGC=36°∵∠C+∠DGC+∠D=180°
∴∠D=108°【考點(diǎn)】此題考查了平行線的判定與性質(zhì),三角形內(nèi)角和定理,熟記“內(nèi)錯(cuò)角相等,兩直線平行”、“同旁內(nèi)角互補(bǔ),兩直線平行”及“兩直線平行,同旁內(nèi)角互補(bǔ)”是解題的關(guān)鍵.3、見解析.【解析】【分析】假設(shè)三角形的三個(gè)內(nèi)角中有兩個(gè)(或三個(gè))直角,不妨設(shè),則,這與三角形內(nèi)角和為相矛盾,不成立,由此即可證明.【詳解】證明:假設(shè)三角形的三個(gè)內(nèi)角中有兩個(gè)(或三個(gè))直角,不妨設(shè),則,這與三角形內(nèi)角和為相矛盾,不成立,所以一個(gè)三角形中不能有兩個(gè)直角.【考點(diǎn)】本題主要考查了反證法,解題的關(guān)鍵在于能夠熟練掌握反證法的步驟.4、(1)見解析(2)【解析】【分析】(1)根據(jù),利用三角形內(nèi)角和.根據(jù),得出,根據(jù)平行線判定定理即可得出結(jié)論;(2)根據(jù),得出方程,解方程求出,根據(jù)BD平分,求出,再根據(jù)余角性質(zhì)求解即可.(1)證明:∵,∴,∴.∵,∴,∴;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工藝培訓(xùn)制度
- 技術(shù)培訓(xùn)及交底制度
- 口才培訓(xùn)機(jī)構(gòu)積分制度
- 班級(jí)心理委員培訓(xùn)制度
- 公司關(guān)于培訓(xùn)報(bào)銷制度
- 動(dòng)火作業(yè)培訓(xùn)制度
- 安全培訓(xùn)落實(shí)制度方案
- 志愿者服務(wù)培訓(xùn)管理制度
- 職技培訓(xùn)人員管理制度
- 培訓(xùn)學(xué)校學(xué)生試聽制度
- DB14∕T 1754-2018 保模一體板現(xiàn)澆混凝土復(fù)合保溫系統(tǒng)通.用技術(shù)條件
- JGJT46-2024《施工現(xiàn)場(chǎng)臨時(shí)用電安全技術(shù)標(biāo)準(zhǔn)》條文解讀
- 電梯安裝施工合同
- DBJ41-T 263-2022 城市房屋建筑和市政基礎(chǔ)設(shè)施工程及道路揚(yáng)塵污染防治差異化評(píng)價(jià)標(biāo)準(zhǔn) 河南省工程建設(shè)標(biāo)準(zhǔn)(住建廳版)
- 水工鋼結(jié)構(gòu)平面鋼閘門設(shè)計(jì)計(jì)算書
- DL-T5024-2020電力工程地基處理技術(shù)規(guī)程
- 耐高溫鋁電解電容器項(xiàng)目計(jì)劃書
- 小學(xué)四年級(jí)語文上冊(cè)期末測(cè)試卷(可打印)
- 《肺癌的診斷與治療》課件
- 人教版三年級(jí)上冊(cè)數(shù)學(xué)應(yīng)用題100題及答案
- 防污閃涂料施工技術(shù)措施
評(píng)論
0/150
提交評(píng)論