版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
滬科版9年級(jí)下冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、在中,,,給出條件:①;②;③外接圓半徑為4.請(qǐng)?jiān)诮o出的3個(gè)條件中選取一個(gè),使得BC的長(zhǎng)唯一.可以選取的是()A.① B.② C.③ D.①或③2、如圖,在Rt△ABC中,,,點(diǎn)D、E分別是AB、AC的中點(diǎn).將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,射線BD與射線CE交于點(diǎn)P,在這個(gè)旋轉(zhuǎn)過(guò)程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④3、下列圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B. C. D.4、如圖,,,,都是上的點(diǎn),,垂足為,若,則的度數(shù)為()A. B. C. D.5、扇形的半徑擴(kuò)大為原來(lái)的3倍,圓心角縮小為原來(lái)的,那么扇形的面積()A.不變 B.面積擴(kuò)大為原來(lái)的3倍C.面積擴(kuò)大為原來(lái)的9倍 D.面積縮小為原來(lái)的6、如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),PA=4,則PB的長(zhǎng)度為()A.3 B.4 C.5 D.67、如圖,與相切于點(diǎn),連接交于點(diǎn),點(diǎn)為優(yōu)弧上一點(diǎn),連接,,若,的半徑,則的長(zhǎng)為()A.4 B. C. D.18、如圖,與的兩邊分別相切,其中OA邊與相切于點(diǎn)P.若,,則OC的長(zhǎng)為()A.8 B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、某射擊運(yùn)動(dòng)員在同一條件下的射擊成績(jī)記錄如下:射擊次數(shù)20401002004001000“射中9環(huán)以上”的次數(shù)153378158321801“射中9環(huán)以下”的頻率通過(guò)計(jì)算頻率,估計(jì)這名運(yùn)動(dòng)員射擊一次時(shí)“射中9環(huán)以上”的概率是______(結(jié)果保留小數(shù)點(diǎn)后一位).2、邊長(zhǎng)相等、各內(nèi)角均為120°的六邊形ABCDEF在直角坐標(biāo)系內(nèi)的位置如圖所示,,點(diǎn)B在原點(diǎn),把六邊形ABCDEF沿x軸正半軸繞頂點(diǎn)按順時(shí)針?lè)较?,從點(diǎn)B開(kāi)始逐次連續(xù)旋轉(zhuǎn),每次旋轉(zhuǎn)60°,經(jīng)過(guò)2021次旋轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是_____________.3、把一副普通撲克牌中的13張黑桃牌洗勻后正面朝下放在桌子上,從中隨機(jī)抽取一張,則抽出的牌上的數(shù)小于5的概率為_(kāi)____.4、如果點(diǎn)與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,那么點(diǎn)B的坐標(biāo)是______.5、在菱形ABCD中,AB=6,E為AB的中點(diǎn),連結(jié)AC,DE交于點(diǎn)F,連結(jié)BF.記∠ABC=α(0°<α<180°).(1)當(dāng)α=60°時(shí),則AF的長(zhǎng)是_____;(2)當(dāng)α在變化過(guò)程中,BF的取值范圍是_____.6、如圖,在中,,是內(nèi)的一個(gè)動(dòng)點(diǎn),滿足.若,,則長(zhǎng)的最小值為_(kāi)______.7、在平面直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是______.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖,的直徑cm,AM和BN是它的切線,DE與相切于點(diǎn)E,并與AM,BN分別相交于D,C兩點(diǎn).設(shè),,求y關(guān)于x的函數(shù)解析式.2、如圖,在⊙O中,弦AC與弦BD交于點(diǎn)P,AC=BD.(1)求證AP=BP;(2)連接AB,若AB=8,BP=5,DP=3,求⊙O的半徑.3、如圖,ABC是⊙O的內(nèi)接三角形,,,連接AO并延長(zhǎng)交⊙O于點(diǎn)D,過(guò)點(diǎn)C作⊙O的切線,與BA的延長(zhǎng)線相交于點(diǎn)E.(1)求證:AD∥EC;(2)若AD=6,求線段AE的長(zhǎng).4、如圖,已知線段,點(diǎn)A在線段上,且,點(diǎn)B為線段上的一個(gè)動(dòng)點(diǎn).以A為中心順時(shí)針旋轉(zhuǎn)點(diǎn)M,以B為中心逆時(shí)針旋轉(zhuǎn)點(diǎn)N,旋轉(zhuǎn)角分別為和.若旋轉(zhuǎn)后M、N兩點(diǎn)重合成一點(diǎn)C(即構(gòu)成),設(shè).(1)的周長(zhǎng)為_(kāi)______;(2)若,求x的值.5、在平面直角坐標(biāo)系xOy中,的半徑為2.點(diǎn)P,Q為外兩點(diǎn),給出如下定義:若上存在點(diǎn)M,N,使得P,Q,M,N為頂點(diǎn)的四邊形為矩形,則稱點(diǎn)P,Q是的“成對(duì)關(guān)聯(lián)點(diǎn)”.(1)如圖,點(diǎn)A,B,C,D橫、縱坐標(biāo)都是整數(shù).在點(diǎn)B,C,D中,與點(diǎn)A組成的“成對(duì)關(guān)聯(lián)點(diǎn)”的點(diǎn)是______;(2)點(diǎn)在第一象限,點(diǎn)F與點(diǎn)E關(guān)于x軸對(duì)稱.若點(diǎn)E,F(xiàn)是的“成對(duì)關(guān)聯(lián)點(diǎn)”,直接寫出t的取值范圍;(3)點(diǎn)G在y軸上.若直線上存在點(diǎn)H,使得點(diǎn)G,H是的“成對(duì)關(guān)聯(lián)點(diǎn)”,直接寫出點(diǎn)G的縱坐標(biāo)的取值范圍.6、在正方形ABCD中,過(guò)點(diǎn)B作直線l,點(diǎn)E在直線l上,連接CE,DE,其中,過(guò)點(diǎn)C作于點(diǎn)F,交直線l于點(diǎn)H.(1)當(dāng)直線l在如圖①的位置時(shí)①請(qǐng)直接寫出與之間的數(shù)量關(guān)系______.②請(qǐng)直接寫出線段BH,EH,CH之間的數(shù)量關(guān)系______.(2)當(dāng)直線l在如圖②的位置時(shí),請(qǐng)寫出線段BH,EH,CH之間的數(shù)量關(guān)系并證明;(3)已知,在直線l旋轉(zhuǎn)過(guò)程中當(dāng)時(shí),請(qǐng)直接寫出EH的長(zhǎng).7、如圖,和中,,,,連接,點(diǎn)M,N,P分別是的中點(diǎn).(1)請(qǐng)你判斷的形狀,并證明你的結(jié)論.(2)將繞點(diǎn)A旋轉(zhuǎn),若,請(qǐng)直接寫出周長(zhǎng)的最大值與最小值.-參考答案-一、單選題1、B【分析】畫出圖形,作,交BE于點(diǎn)D.根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求出AD的長(zhǎng),再由AD和AC的長(zhǎng)作比較即可判斷①②;由前面所求的AD的長(zhǎng)和AB的長(zhǎng),結(jié)合該三角形外接圓的半徑長(zhǎng),即可判斷該外接圓的圓心可在AB上方,也可在AB下方,其與AE的交點(diǎn)即為C點(diǎn),為兩點(diǎn)不唯一,可判斷其不符合題意.【詳解】如圖,,,點(diǎn)C在射線上.作,交BE于點(diǎn)D.∵,∴為等腰直角三角形,∴,∴不存在的三角形ABC,故①不符合題意;∵,,AC=8,而AC>6,∴存在的唯一三角形ABC,如圖,點(diǎn)C即是.∴,使得BC的長(zhǎng)唯一成立,故②符合題意;∵,,∴存在兩個(gè)點(diǎn)C使的外接圓的半徑等于4,兩個(gè)外接圓圓心分別在AB的上、下兩側(cè),如圖,點(diǎn)C和即為使的外接圓的半徑等于4的點(diǎn).故③不符合題意.故選B.【點(diǎn)睛】本題考查等腰直角三角形的判定和性質(zhì),勾股定理,三角形外接圓的性質(zhì).利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.2、B【分析】根據(jù),,點(diǎn)D、E分別是AB、AC的中點(diǎn).得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時(shí),CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當(dāng)AE⊥CP時(shí),CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時(shí),BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點(diǎn)P在以點(diǎn)O為圓心,OA長(zhǎng)為半徑,的圓上運(yùn)動(dòng)軌跡為,L可判斷④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為正確即可.【詳解】解:∵,,點(diǎn)D、E分別是AB、AC的中點(diǎn).∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時(shí),CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當(dāng)AE⊥CP時(shí),CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時(shí),BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點(diǎn)P在以點(diǎn)O為圓心,OA長(zhǎng)為半徑,的圓上運(yùn)動(dòng)軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為正確;正確的是①②④.故選B.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線段中點(diǎn)定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長(zhǎng)公式,本題難度大,利用輔助線最長(zhǎng)準(zhǔn)確圖形是解題關(guān)鍵.3、D【詳解】解:.不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,故本選項(xiàng)不符合題意;.不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故本選項(xiàng)不符合題意;.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故本選項(xiàng)不符合題意;.既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,故本選項(xiàng)符合題意.故選:D.【點(diǎn)睛】本題考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念,解題的關(guān)鍵是掌握軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合.4、B【分析】連接OC.根據(jù)確定,,進(jìn)而計(jì)算出,根據(jù)圓心角的性質(zhì)求出,最后根據(jù)圓周角的性質(zhì)即可求出.【詳解】解:如下圖所示,連接OC.∵,∴,.∴.∵.∴.∴∵和分別是所對(duì)的圓周角和圓心角,∴.故選:B.【點(diǎn)睛】本題考查垂徑定理,圓心角的性質(zhì),圓周角的性質(zhì),綜合應(yīng)用這些知識(shí)點(diǎn)是解題關(guān)鍵.5、A【分析】設(shè)原來(lái)扇形的半徑為r,圓心角為n,則變化后的扇形的半徑為3r,圓心角為,利用扇形的面積公式即可計(jì)算得出它們的面積,從而進(jìn)行比較即可得答案.【詳解】設(shè)原來(lái)扇形的半徑為r,圓心角為n,∴原來(lái)扇形的面積為,∵扇形的半徑擴(kuò)大為原來(lái)的3倍,圓心角縮小為原來(lái)的,∴變化后的扇形的半徑為3r,圓心角為,∴變化后的扇形的面積為,∴扇形的面積不變.故選:A.【點(diǎn)睛】本題考查了扇形面積,熟練掌握并靈活運(yùn)用扇形面積公式是解題關(guān)鍵.6、B【分析】由切線的性質(zhì)可推出,.再根據(jù)直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點(diǎn),∴,,∴在和中,,∴,∴.故選:B【點(diǎn)睛】本題考查切線的性質(zhì),三角形全等的判定和性質(zhì).熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.7、B【分析】連接OB,根據(jù)切線性質(zhì)得∠ABO=90°,再根據(jù)圓周角定理求得∠AOB=60°,進(jìn)而求得∠A=30°,然后根據(jù)含30°角的直角三角形的性質(zhì)解答即可.【詳解】解:連接OB,∵AB與相切于點(diǎn)B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴,故選:B.【點(diǎn)睛】本題考查切線的性質(zhì)、圓周角定理、直角三角形的銳角互余、含30°角的直角三角形性質(zhì)、勾股定理,熟練掌握相關(guān)知識(shí)的聯(lián)系與運(yùn)用是解答的關(guān)鍵.8、C【分析】如圖所示,連接CP,由切線的性質(zhì)和切線長(zhǎng)定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點(diǎn),∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點(diǎn)睛】本題主要考查了切線的性質(zhì),切線長(zhǎng)定理,等腰直角三角形的性質(zhì)與判定,勾股定理,熟知切線長(zhǎng)定理是解題的關(guān)鍵.二、填空題1、0.8【分析】重復(fù)試驗(yàn)次數(shù)越多,其頻率越能估計(jì)概率,求出射擊1000次時(shí)的頻率即可.【詳解】解:由題意可知射擊1000次時(shí),運(yùn)動(dòng)員射擊一次時(shí)“射中9環(huán)以上”的頻率為∴用頻率估計(jì)概率為0.801,保留小數(shù)點(diǎn)后一位可知概率值為0.8故答案為:0.8.【點(diǎn)睛】本題考查了概率.解題的關(guān)鍵在于明確頻率估計(jì)概率時(shí)要在重復(fù)試驗(yàn)次數(shù)盡可能多的情況下.2、【分析】根據(jù)旋轉(zhuǎn)找出規(guī)律后再確定坐標(biāo).【詳解】∵正六邊形ABCDEF沿x軸正半軸作無(wú)滑動(dòng)的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,∴每6次翻轉(zhuǎn)為一個(gè)循環(huán)組循環(huán),∵,∴經(jīng)過(guò)2021次翻轉(zhuǎn)為第337循環(huán)組的第5次翻轉(zhuǎn),點(diǎn)B在開(kāi)始時(shí)點(diǎn)C的位置,∵,∴,∴翻轉(zhuǎn)前進(jìn)的距離為:,如圖,過(guò)點(diǎn)B作BG⊥x于G,則∠BAG=60°,∴,,∴,∴點(diǎn)B的坐標(biāo)為.故答案為:.【點(diǎn)睛】題考查旋轉(zhuǎn)的性質(zhì)與正多邊形,由題意找出規(guī)律是解題的關(guān)鍵.3、【分析】抽出的牌的點(diǎn)數(shù)小于5有1,2,3,4共4個(gè),總的樣本數(shù)目為13,由此可以容易知道事件抽出的牌的點(diǎn)數(shù)小于5的概率.【詳解】解:∵抽出的牌的點(diǎn)數(shù)小于5有1,2,3,4共4個(gè),總的樣本數(shù)目為13,∴從中任意抽取一張,抽出的牌點(diǎn)數(shù)小于5的概率是:.故答案為:.【點(diǎn)睛】此題主要考查了概率的求法.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.4、【分析】關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)特征為:橫坐標(biāo)、縱坐標(biāo)都互為相反數(shù);進(jìn)而求出點(diǎn)B坐標(biāo).【詳解】解:由題意知點(diǎn)B橫坐標(biāo)為;縱坐標(biāo)為;故答案為:.【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)知識(shí).解題的關(guān)鍵在于熟練記憶關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)中相對(duì)應(yīng)的坐標(biāo)互為相反數(shù).5、2【分析】(1)證明是等邊三角形,,進(jìn)而即可求得;(2)過(guò)點(diǎn)作,交于點(diǎn),以為圓心長(zhǎng)度為半徑作半圓,交的延長(zhǎng)延長(zhǎng)線于點(diǎn),證明在半圓上,進(jìn)而即可求得范圍.【詳解】(1)如圖,四邊形是菱形,是等邊三角形是的中點(diǎn)即故答案為:2(2)如圖,過(guò)點(diǎn)作,交于點(diǎn),以為圓心長(zhǎng)度為半徑作半圓,交的延長(zhǎng)延長(zhǎng)線于點(diǎn),四邊形是菱形,在以為圓心長(zhǎng)度為半徑的圓上,又∠ABC=α(0°<α<180°)在半圓上,最小值為最大值為故答案為:【點(diǎn)睛】本題考查了相似三角形的性質(zhì)與判定,點(diǎn)與圓的位置關(guān)系求最值問(wèn)題,掌握相似三角形的性質(zhì)與判定是解題的關(guān)鍵.6、2【分析】取AC中點(diǎn)O,由勾股定理的逆定理可知∠ADC=90°,則點(diǎn)D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長(zhǎng)的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點(diǎn)O,∵,即,∴∠ADC=90°,∴點(diǎn)D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長(zhǎng)的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點(diǎn)睛】本題主要考查了一點(diǎn)到圓上一點(diǎn)的最短距離,勾股定理的逆定理,勾股定理,解題的關(guān)鍵在于確定點(diǎn)D的運(yùn)動(dòng)軌跡.7、(3,4)【分析】關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).【詳解】:由題意,得點(diǎn)(-3,-4)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(3,4),故答案為:(3,4).【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是掌握好對(duì)稱點(diǎn)的坐標(biāo)規(guī)律:關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).三、解答題1、【分析】連接OC,OD,OE,根據(jù)切線的性質(zhì)得到cm,,,推出,,根據(jù),列得,從而求出函數(shù)解析式.【詳解】解:連接OC,OD,OE,∵AD切于點(diǎn)A,CB切于點(diǎn)B,CD切于點(diǎn)E,直徑cm∴cm,,,∴,,∵,∴∴..【點(diǎn)睛】此題考查了圓的切線的性質(zhì)定理,全等三角形的判定及性質(zhì)定理,求函數(shù)解析式,正確連線利用切線的性質(zhì)是解題的關(guān)鍵.2、(1)證明見(jiàn)解析;(2).【分析】(1)連接,先證出,再根據(jù)圓周角定理可得,然后根據(jù)等腰三角形的判定即可得證;(2)連接,并延長(zhǎng)交于點(diǎn),連接,過(guò)作于點(diǎn),先根據(jù)線段垂直平分線的判定與性質(zhì)可得,再根據(jù)線段的和差、勾股定理可得,然后根據(jù)直角三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,最后在中,利用勾股定理可得的長(zhǎng),從而可得的長(zhǎng),在中,利用勾股定理即可得.【詳解】證明:(1)如圖,連接,,,,即,,;(2)連接,并延長(zhǎng)交于點(diǎn),連接,過(guò)作于點(diǎn),,,是的垂直平分線,,,,,在和中,,,,設(shè),則,在中,,即,解得,在中,,即的半徑為.【點(diǎn)睛】本題考查了圓周角定理、直角三角形全等的判定定理與性質(zhì)、勾股定理、垂徑定理等知識(shí)點(diǎn),較難的是題(2),通過(guò)作輔助線,構(gòu)造全等三角形和直角三角形是解題關(guān)鍵.3、(1)見(jiàn)解析;(2)6【分析】(1)連接OC,根據(jù)CE是⊙O的切線,可得∠OCE=,根據(jù)圓周角定理,可得∠AOC=,從而得到∠AOC+∠OCE=,即可求證;(2)過(guò)點(diǎn)A作AF⊥EC交EC于點(diǎn)F,由∠AOC=,OA=OC,可得∠OAC=,從而得到∠BAD=,再由AD∥EC,可得,然后證得四邊形OAFC是正方形,可得,從而得到AF=3,再由直角三角形的性質(zhì),即可求解.【詳解】證明:(1)連接OC,∵CE是⊙O的切線,∴∠OCE=,∵∠ABC=,∴∠AOC=2∠ABC=,∵∠AOC+∠OCE=,∴AD∥EC;(2)解:過(guò)點(diǎn)A作AF⊥EC交EC于點(diǎn)F,∵∠AOC=,OA=OC,∴∠OAC=,∵∠BAC=,∴∠BAD=,∵AD∥EC,∴,∵∠OCE=,∠AOC=,∠AFC=90°,∴四邊形OAFC是矩形,∵OA=OC,∴四邊形OAFC是正方形,∴,∵,∴,在Rt△AFE中,,∴AE=2AF=6.【點(diǎn)睛】本題主要考查了圓周角定理,切線的性質(zhì),直角三角形的性質(zhì),正方形的判定和性質(zhì),熟練掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.4、(1)4(2)【分析】(1)由旋轉(zhuǎn)知:AM=AC=1,BN=BC,將△ABC的周長(zhǎng)轉(zhuǎn)化為MN;(2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.(1)解:由旋轉(zhuǎn)知:AM=AC=1,BN=BC=3-x,∴△ABC的周長(zhǎng)為:AC+AB+BC=MN=4;故答案為:4;(2)解:∵α+β=270°,∴∠CAB+∠CBA=360°-270°=90°,∴∠ACB=180°-(∠CAB+∠CBA)=180°-90°=90°,∴AC2+BC2=AB2,即12+(3-x)2=x2,解得.【點(diǎn)睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),勾股定理等知識(shí),證明∠ACB=90°是解題的關(guān)鍵.5、(1)B和C;(2);(3)【分析】(1)根據(jù)圖形可確定與點(diǎn)A組成的“成對(duì)關(guān)聯(lián)點(diǎn)”的點(diǎn);(2)如圖,點(diǎn)E在直線上,點(diǎn)F在直線上,當(dāng)點(diǎn)E在線段上,點(diǎn)F在線段上時(shí),有的“成對(duì)關(guān)聯(lián)點(diǎn)”,求出即可得出的取值范圍;(3)分類討論:點(diǎn)G在上,點(diǎn)G在的下方和點(diǎn)G在的上方,構(gòu)造的“成對(duì)關(guān)聯(lián)點(diǎn)”,即可求出的取值范圍.【詳解】(1)如圖所示:在點(diǎn)B,C,D中,與點(diǎn)A組成的“成對(duì)關(guān)聯(lián)點(diǎn)”的點(diǎn)是B和C,故答案為:B和C;(2)∵∴在直線上,∵點(diǎn)F與點(diǎn)E關(guān)于x軸對(duì)稱,∴在直線,如下圖所示:直線和與分別交于點(diǎn),,與直線分別交于,,由題可得:,當(dāng)點(diǎn)E在線段上時(shí),有的“成對(duì)關(guān)聯(lián)點(diǎn)”∴;(3)如圖,當(dāng)點(diǎn)G在上時(shí),軸,在上不存在這樣的矩形;如圖,當(dāng)點(diǎn)G在下方時(shí),也不存在這樣的矩形;如圖,當(dāng)點(diǎn)G在上方時(shí),存在這樣的矩形GMNH,當(dāng)恰好只能構(gòu)成一個(gè)矩形時(shí),設(shè),直線與y軸相交于點(diǎn)K,則,,,,,∴,即,∴,解得:或(舍),綜上:當(dāng)時(shí),點(diǎn)G,H是的“成對(duì)關(guān)聯(lián)點(diǎn)”.【點(diǎn)睛】本題考查幾何圖形綜合問(wèn)題,屬于中考?jí)狠S題,掌握“成對(duì)關(guān)聯(lián)點(diǎn)”的定義是解題的關(guān)鍵.6、(1)①;②;(2);證明見(jiàn)解析;(3)或.【分析】(1)①,根據(jù)CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據(jù)CF⊥DE,得出CF平分∠ECD即可;②,過(guò)點(diǎn)C作CG⊥BE于G,根據(jù)BC=EC,得出∠ECG=∠BCG=,根據(jù)∠ECH=∠HCD=,可得CG=HG,根據(jù)勾股定理在Rt△GHC中,,根據(jù)GE=,得出即可;(2),過(guò)點(diǎn)C作交BE于點(diǎn)M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據(jù),分兩種情況,當(dāng)∠ABE=90°-15°=75°時(shí),BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據(jù)CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據(jù)勾股定理HE=,當(dāng)∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據(jù)30°直角三角形先證得出CF=,根據(jù)勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②,過(guò)點(diǎn)C作CG⊥BE于G,∵BC=EC,∴∠ECG=∠BCG=,∵∠ECH=∠HCD=,∴∠GCH=∠ECG+∠ECF=+,∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,∴CG=HG,在Rt△GHC中,∴,∵GE=,∴GH=GE+EH=,∴,∴,∴,故答案是:;(2),證明:過(guò)點(diǎn)C作交BE于點(diǎn)M,則,∴?,∴,∵,,∴,,∴,∴,∴,,∴是等腰直角三角形,∴,∵,∴,(3)或,∵,分兩種情況,當(dāng)∠ABE=90°-15°=75°時(shí),∵BC=CE,∴∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,∴∠DC
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025云南民爆集團(tuán)有限責(zé)任公司缺員崗位社會(huì)招聘(2人)筆試參考題庫(kù)附帶答案詳解
- 2025中車山東風(fēng)電公司校園招聘筆試參考題庫(kù)附帶答案詳解
- 2025中煤科工集團(tuán)上海有限公司校園招聘筆試歷年備考題庫(kù)附帶答案詳解2套試卷
- 2025中建四局一公司春季校園招聘100人筆試歷年典型考點(diǎn)題庫(kù)附帶答案詳解
- 2025中國(guó)葛洲壩集團(tuán)易普力股份有限公司禹州分公司招聘22人(河南)筆試參考題庫(kù)附帶答案詳解
- 新員工培訓(xùn)經(jīng)典
- 2025中國(guó)電力畢業(yè)生招聘擬錄人員(第五批次)筆試歷年備考題庫(kù)附帶答案詳解
- 2025中國(guó)檢驗(yàn)認(rèn)證集團(tuán)福建有限公司校園招聘64人筆試歷年??键c(diǎn)試題專練附帶答案詳解2套試卷
- 新員工培訓(xùn)目的和意義
- 2025中國(guó)安能集團(tuán)第二工程局有限公司南昌分公司招聘23人筆試參考題庫(kù)附帶答案詳解
- 2025年新版安全生產(chǎn)法知識(shí)考試試卷(含答案)
- 2026年齊齊哈爾高等師范??茖W(xué)校單招職業(yè)技能測(cè)試題庫(kù)必考題
- 輸變電工程安全教育課件
- 物業(yè)項(xiàng)目綜合服務(wù)方案
- 第9章 施工中的難點(diǎn)與要點(diǎn)分析
- 大健康行業(yè)經(jīng)營(yíng)保障承諾函(7篇)
- 胖東來(lái)管理制度全公開(kāi)執(zhí)行標(biāo)準(zhǔn)
- 2025-2026學(xué)年北京市西城區(qū)初二(上期)期末考試物理試卷(含答案)
- 書法培訓(xùn)班安全制度
- GB/T 44626.2-2025微細(xì)氣泡技術(shù)表征用樣品中氣泡消除方法第2部分:消除技術(shù)
- 企業(yè)管理 華為會(huì)議接待全流程手冊(cè)SOP
評(píng)論
0/150
提交評(píng)論