版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共2頁牡丹江大學(xué)《智能開發(fā)綜合實(shí)踐》2024-2025學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的模型評(píng)估中,需要使用多種指標(biāo)來衡量模型的性能。假設(shè)評(píng)估一個(gè)分類模型,以下關(guān)于模型評(píng)估指標(biāo)的描述,哪一項(xiàng)是不正確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,是常用的評(píng)估指標(biāo)之一B.召回率衡量了被正確識(shí)別的正例在實(shí)際正例中的比例C.F1值綜合考慮了準(zhǔn)確率和召回率,是一個(gè)更全面的評(píng)估指標(biāo)D.只要模型的準(zhǔn)確率高,就說明模型在實(shí)際應(yīng)用中表現(xiàn)良好,無需考慮其他指標(biāo)2、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù)手段。以下關(guān)于遷移學(xué)習(xí)的描述,不正確的是()A.遷移學(xué)習(xí)可以利用已有的預(yù)訓(xùn)練模型和知識(shí),在新的任務(wù)和數(shù)據(jù)上進(jìn)行微調(diào)B.遷移學(xué)習(xí)能夠減少新任務(wù)中的數(shù)據(jù)標(biāo)注工作量和訓(xùn)練時(shí)間C.遷移學(xué)習(xí)只能在相似的領(lǐng)域和任務(wù)中應(yīng)用,無法跨越不同的領(lǐng)域D.合理運(yùn)用遷移學(xué)習(xí)可以提高模型的泛化能力和性能3、在人工智能的文本生成任務(wù)中,除了生成連貫的文字內(nèi)容,還需要考慮語言的邏輯性和合理性。假設(shè)我們要生成一篇新聞報(bào)道,以下關(guān)于文本生成的說法,哪一項(xiàng)是正確的?()A.可以完全依靠隨機(jī)生成來創(chuàng)造新穎的內(nèi)容B.語言模型的規(guī)模越大,生成的質(zhì)量一定越高C.預(yù)訓(xùn)練語言模型結(jié)合微調(diào)可以提高生成效果D.不需要考慮語法和語義的約束4、人工智能中的優(yōu)化算法對(duì)于模型的訓(xùn)練和性能提升起著關(guān)鍵作用。以下關(guān)于優(yōu)化算法的敘述,不正確的是()A.常見的優(yōu)化算法包括隨機(jī)梯度下降(SGD)、Adagrad、Adadelta等B.不同的優(yōu)化算法在收斂速度、穩(wěn)定性和對(duì)超參數(shù)的敏感性方面有所不同C.優(yōu)化算法的選擇只取決于模型的架構(gòu),與數(shù)據(jù)特點(diǎn)無關(guān)D.可以通過調(diào)整優(yōu)化算法的參數(shù)來提高模型的訓(xùn)練效果5、在人工智能的情感計(jì)算中,需要從人的面部表情、語音語調(diào)、文字等多模態(tài)信息中識(shí)別情感。假設(shè)要綜合分析這些多模態(tài)信息來準(zhǔn)確判斷一個(gè)人的情感狀態(tài),以下哪種融合方式是有效的?()A.早期融合,在數(shù)據(jù)層面進(jìn)行整合B.晚期融合,在決策層面進(jìn)行整合C.不進(jìn)行融合,分別處理每個(gè)模態(tài)的信息D.隨機(jī)選擇一種模態(tài)的信息進(jìn)行分析6、在人工智能的研究領(lǐng)域中,自然語言處理是重要的一部分。假設(shè)我們要開發(fā)一個(gè)能夠自動(dòng)回答用戶問題的智能客服系統(tǒng),需要對(duì)大量的文本數(shù)據(jù)進(jìn)行學(xué)習(xí)和分析。以下哪種技術(shù)在處理自然語言的語義理解方面可能發(fā)揮關(guān)鍵作用?()A.詞法分析B.句法分析C.語義網(wǎng)絡(luò)D.語音識(shí)別7、人工智能中的語音識(shí)別技術(shù)能夠?qū)⑷祟惖恼Z音轉(zhuǎn)換為文字。以下關(guān)于語音識(shí)別的敘述,不準(zhǔn)確的是()A.語音識(shí)別系統(tǒng)通常包括聲學(xué)模型、語言模型和解碼器等部分B.語音識(shí)別的準(zhǔn)確率受到語音質(zhì)量、口音和背景噪聲等因素的影響C.語音識(shí)別技術(shù)已經(jīng)非常完美,能夠準(zhǔn)確識(shí)別各種口音和語速的語音D.深度學(xué)習(xí)的應(yīng)用顯著提高了語音識(shí)別的性能和準(zhǔn)確率8、人工智能中的異常檢測是一項(xiàng)重要任務(wù)。假設(shè)要在一個(gè)工業(yè)生產(chǎn)過程中檢測出異常的數(shù)據(jù)點(diǎn),以下關(guān)于異常檢測方法的描述,正確的是:()A.基于統(tǒng)計(jì)的異常檢測方法適用于所有類型的數(shù)據(jù),準(zhǔn)確性高B.基于機(jī)器學(xué)習(xí)的異常檢測模型需要大量的正常數(shù)據(jù)進(jìn)行訓(xùn)練C.深度學(xué)習(xí)的異常檢測方法能夠自動(dòng)發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式,無需人工特征工程D.以上方法在不同的應(yīng)用場景中都有各自的優(yōu)缺點(diǎn),需要根據(jù)實(shí)際情況選擇9、在人工智能的發(fā)展中,硬件的支持對(duì)于提高計(jì)算效率和性能至關(guān)重要。假設(shè)要訓(xùn)練一個(gè)大規(guī)模的深度學(xué)習(xí)模型,需要快速處理海量的數(shù)據(jù)。以下哪種硬件架構(gòu)或設(shè)備在加速模型訓(xùn)練方面具有顯著的優(yōu)勢?()A.CPUB.GPUC.TPUD.FPGA10、在人工智能的機(jī)器學(xué)習(xí)算法中,決策樹是一種常見的算法。假設(shè)我們要根據(jù)一些用戶的特征來預(yù)測他們是否會(huì)購買某款產(chǎn)品,使用決策樹進(jìn)行建模。那么,關(guān)于決策樹的特點(diǎn),以下哪一項(xiàng)是不正確的?()A.易于理解和解釋,生成的決策規(guī)則清晰明了B.對(duì)數(shù)據(jù)的噪聲和缺失值比較敏感C.能夠處理非線性關(guān)系的數(shù)據(jù)D.決策樹的構(gòu)建不需要進(jìn)行特征選擇11、在人工智能的倫理和社會(huì)影響方面,存在許多需要思考的問題。假設(shè)一個(gè)基于人工智能的招聘系統(tǒng)根據(jù)候選人的簡歷和面試表現(xiàn)進(jìn)行篩選。以下關(guān)于這種系統(tǒng)可能帶來的潛在問題,哪一項(xiàng)是最值得關(guān)注的?()A.系統(tǒng)可能會(huì)因?yàn)閿?shù)據(jù)偏差而對(duì)某些群體產(chǎn)生不公平的篩選結(jié)果B.系統(tǒng)的決策過程過于透明,導(dǎo)致企業(yè)招聘策略被競爭對(duì)手輕易了解C.系統(tǒng)可能會(huì)過于依賴簡歷信息,而忽略了候選人的實(shí)際能力和潛力D.系統(tǒng)的運(yùn)行成本過高,對(duì)企業(yè)造成經(jīng)濟(jì)負(fù)擔(dān)12、深度學(xué)習(xí)在近年來取得了顯著的成果,特別是在圖像識(shí)別和語音識(shí)別等領(lǐng)域。以下關(guān)于深度學(xué)習(xí)的敘述,不準(zhǔn)確的是()A.深度學(xué)習(xí)是一種基于多層神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)方法,能夠自動(dòng)從數(shù)據(jù)中學(xué)習(xí)特征B.深度學(xué)習(xí)模型需要大量的訓(xùn)練數(shù)據(jù)和強(qiáng)大的計(jì)算資源來進(jìn)行訓(xùn)練C.深度學(xué)習(xí)可以解決傳統(tǒng)機(jī)器學(xué)習(xí)方法難以處理的復(fù)雜問題,如語義理解和情感分析D.深度學(xué)習(xí)模型的結(jié)構(gòu)和參數(shù)一旦確定,就無法根據(jù)新的數(shù)據(jù)進(jìn)行調(diào)整和優(yōu)化13、人工智能中的多模態(tài)學(xué)習(xí)旨在融合多種不同類型的數(shù)據(jù),如圖像、文本和音頻。假設(shè)要開發(fā)一個(gè)能夠同時(shí)理解圖像和文本內(nèi)容的系統(tǒng),以下哪個(gè)挑戰(zhàn)是最突出的?()A.數(shù)據(jù)的標(biāo)注和對(duì)齊B.模型的訓(xùn)練效率C.不同模態(tài)數(shù)據(jù)的特征提取D.模型的可擴(kuò)展性14、人工智能在教育領(lǐng)域的應(yīng)用逐漸興起。假設(shè)要開發(fā)一個(gè)智能輔導(dǎo)系統(tǒng),以下關(guān)于這種系統(tǒng)的描述,正確的是:()A.智能輔導(dǎo)系統(tǒng)能夠根據(jù)每個(gè)學(xué)生的學(xué)習(xí)進(jìn)度和特點(diǎn),提供個(gè)性化的學(xué)習(xí)方案B.智能輔導(dǎo)系統(tǒng)可以完全取代教師的作用,學(xué)生無需與教師進(jìn)行交流C.智能輔導(dǎo)系統(tǒng)的效果只取決于系統(tǒng)的功能,與學(xué)生的學(xué)習(xí)態(tài)度和習(xí)慣無關(guān)D.智能輔導(dǎo)系統(tǒng)不需要考慮教育倫理和學(xué)生隱私保護(hù)問題15、在人工智能的情感識(shí)別中,假設(shè)要從一段較長的語音中準(zhǔn)確捕捉到細(xì)微的情感變化。以下哪種技術(shù)或方法可能有助于實(shí)現(xiàn)這一目標(biāo)?()A.分析語音的韻律特征,如語調(diào)、語速B.只關(guān)注語音的內(nèi)容,忽略語音的表現(xiàn)形式C.對(duì)語音進(jìn)行分段處理,分別進(jìn)行情感識(shí)別D.不進(jìn)行任何預(yù)處理,直接分析原始語音16、在人工智能的文本分類任務(wù)中,例如將新聞文章分類為政治、經(jīng)濟(jì)、體育等類別。假設(shè)數(shù)據(jù)集存在類別不平衡的問題,某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)多于其他類別。為了提高分類模型在這種情況下的性能,以下哪種方法是有效的?()A.對(duì)少數(shù)類進(jìn)行過采樣,增加其數(shù)量B.對(duì)多數(shù)類進(jìn)行欠采樣,減少其數(shù)量C.使用不平衡數(shù)據(jù)直接訓(xùn)練模型,不做處理D.只關(guān)注樣本數(shù)量多的類別,忽略少數(shù)類別17、在人工智能的發(fā)展歷程中,機(jī)器學(xué)習(xí)算法起到了關(guān)鍵作用。假設(shè)我們要開發(fā)一個(gè)能夠預(yù)測股票價(jià)格走勢的模型,需要處理大量的歷史交易數(shù)據(jù)和財(cái)務(wù)報(bào)表等信息。以下關(guān)于選擇機(jī)器學(xué)習(xí)算法的考慮,哪一項(xiàng)是最為重要的?()A.選擇簡單直觀的線性回歸算法,因?yàn)槠湟子诶斫夂徒忉孊.采用復(fù)雜的深度學(xué)習(xí)算法,如卷積神經(jīng)網(wǎng)絡(luò),以捕捉數(shù)據(jù)中的復(fù)雜模式C.運(yùn)用決策樹算法,其能夠生成易于理解的規(guī)則D.隨機(jī)選擇一種算法,碰碰運(yùn)氣18、自然語言處理是人工智能的重要研究方向之一,其目標(biāo)是讓計(jì)算機(jī)理解和生成人類語言。以下關(guān)于自然語言處理的說法,錯(cuò)誤的是()A.詞法分析、句法分析和語義理解是自然語言處理中的關(guān)鍵步驟B.機(jī)器翻譯是自然語言處理的重要應(yīng)用之一,但目前的機(jī)器翻譯質(zhì)量已經(jīng)完全達(dá)到了人類翻譯的水平C.文本分類、情感分析和信息抽取等任務(wù)都屬于自然語言處理的范疇D.自然語言處理面臨著詞匯歧義、句法結(jié)構(gòu)復(fù)雜和語義理解困難等諸多挑戰(zhàn)19、人工智能在智能交通系統(tǒng)中的應(yīng)用可以改善交通流量和安全性。假設(shè)要開發(fā)一個(gè)能夠?qū)崟r(shí)優(yōu)化交通信號(hào)燈的系統(tǒng),以下關(guān)于考慮交通狀況多樣性的方法,哪一項(xiàng)是最關(guān)鍵的?()A.只考慮當(dāng)前道路的車流量,不考慮周邊道路的情況B.綜合考慮不同時(shí)間段、天氣條件和特殊事件等對(duì)交通的影響C.按照固定的模式設(shè)置交通信號(hào)燈,不進(jìn)行實(shí)時(shí)調(diào)整D.忽略行人的需求,只關(guān)注車輛的通行20、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù),能夠利用已有的知識(shí)和模型來解決新的問題。假設(shè)我們已經(jīng)有一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)在要將其應(yīng)用于一個(gè)新的、但相關(guān)的圖像分類任務(wù)。以下關(guān)于遷移學(xué)習(xí)的說法,哪一項(xiàng)是正確的?()A.可以直接使用原模型的參數(shù),無需任何調(diào)整B.只需要對(duì)模型的最后幾層進(jìn)行重新訓(xùn)練C.遷移學(xué)習(xí)一定能提高新任務(wù)的性能D.原模型的架構(gòu)和新任務(wù)必須完全相同21、可解釋性是人工智能模型面臨的一個(gè)重要問題。以下關(guān)于人工智能模型可解釋性的敘述,不正確的是()A.模型的可解釋性有助于用戶理解模型的決策過程和結(jié)果,增強(qiáng)信任B.一些復(fù)雜的深度學(xué)習(xí)模型,如深度神經(jīng)網(wǎng)絡(luò),往往具有較低的可解釋性C.為了提高模型的可解釋性,可以采用特征重要性分析、可視化等方法D.可解釋性對(duì)于所有的人工智能應(yīng)用都是同等重要的,不存在優(yōu)先級(jí)的差異22、人工智能中的聯(lián)邦學(xué)習(xí)技術(shù)旨在保護(hù)數(shù)據(jù)隱私的同時(shí)實(shí)現(xiàn)模型訓(xùn)練。假設(shè)多個(gè)機(jī)構(gòu)想要聯(lián)合訓(xùn)練一個(gè)人工智能模型,同時(shí)保護(hù)各自的數(shù)據(jù)隱私,以下關(guān)于聯(lián)邦學(xué)習(xí)的描述,正確的是:()A.聯(lián)邦學(xué)習(xí)可以在不共享原始數(shù)據(jù)的情況下,直接合并各機(jī)構(gòu)的模型參數(shù)進(jìn)行訓(xùn)練B.聯(lián)邦學(xué)習(xí)過程中不存在通信開銷和安全風(fēng)險(xiǎn)C.采用加密技術(shù)和模型參數(shù)交換的方式,聯(lián)邦學(xué)習(xí)能夠在保護(hù)數(shù)據(jù)隱私的前提下協(xié)同訓(xùn)練模型D.聯(lián)邦學(xué)習(xí)只適用于小規(guī)模的數(shù)據(jù)和簡單的模型,對(duì)于大規(guī)模和復(fù)雜的任務(wù)不適用23、在人工智能的算法中,遺傳算法是一種基于自然選擇和遺傳機(jī)制的優(yōu)化算法??紤]一個(gè)優(yōu)化問題,需要在一個(gè)復(fù)雜的搜索空間中找到最優(yōu)解。以下關(guān)于遺傳算法的描述,哪一項(xiàng)是不正確的?()A.遺傳算法通過模擬生物進(jìn)化過程來尋找最優(yōu)解B.遺傳算法容易陷入局部最優(yōu)解C.遺傳算法對(duì)于大規(guī)模的優(yōu)化問題具有較好的性能D.遺傳算法的搜索過程是隨機(jī)的,沒有任何規(guī)律可循24、人工智能中的情感分析旨在判斷文本所表達(dá)的情感傾向。假設(shè)要分析社交媒體上用戶對(duì)某一產(chǎn)品的評(píng)價(jià)情感,以下哪種方法可能不太適用?()A.基于詞典的方法B.基于機(jī)器學(xué)習(xí)的方法C.基于規(guī)則的方法D.基于人工判斷的方法25、在人工智能的圖像超分辨率任務(wù)中,假設(shè)需要將低分辨率圖像恢復(fù)為高分辨率圖像,同時(shí)保持圖像的細(xì)節(jié)和清晰度。以下哪種方法通常能夠取得較好的效果?()A.基于深度學(xué)習(xí)的超分辨率模型,學(xué)習(xí)圖像的特征和模式B.傳統(tǒng)的插值方法,如雙線性插值C.對(duì)低分辨率圖像進(jìn)行簡單的放大處理D.隨機(jī)生成高分辨率圖像26、在人工智能的研究中,可解釋性是一個(gè)重要的問題。假設(shè)一個(gè)醫(yī)療決策支持系統(tǒng)基于人工智能模型給出診斷建議。以下關(guān)于模型可解釋性的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可解釋性有助于醫(yī)生和患者理解模型的決策依據(jù),增加信任度B.一些復(fù)雜的深度學(xué)習(xí)模型由于其內(nèi)部運(yùn)作的復(fù)雜性,往往具有較低的可解釋性C.為了提高模型的性能,可以犧牲一定的可解釋性D.可解釋性對(duì)于所有類型的人工智能應(yīng)用都是同等重要的,沒有優(yōu)先級(jí)之分27、人工智能中的強(qiáng)化學(xué)習(xí)可以應(yīng)用于機(jī)器人控制。假設(shè)一個(gè)機(jī)器人需要通過強(qiáng)化學(xué)習(xí)學(xué)會(huì)在復(fù)雜環(huán)境中行走和避障,以下關(guān)于機(jī)器人強(qiáng)化學(xué)習(xí)的描述,正確的是:()A.機(jī)器人可以在沒有任何先驗(yàn)知識(shí)的情況下,通過隨機(jī)探索快速學(xué)會(huì)有效的行走和避障策略B.強(qiáng)化學(xué)習(xí)中的獎(jiǎng)勵(lì)設(shè)置對(duì)機(jī)器人的學(xué)習(xí)效果沒有關(guān)鍵影響,只要有獎(jiǎng)勵(lì)就行C.結(jié)合機(jī)器人的物理模型和環(huán)境模型,可以為強(qiáng)化學(xué)習(xí)提供更好的先驗(yàn)知識(shí),加速學(xué)習(xí)過程D.機(jī)器人的強(qiáng)化學(xué)習(xí)只適用于簡單的環(huán)境,對(duì)于復(fù)雜多變的真實(shí)環(huán)境無法應(yīng)用28、在人工智能的自動(dòng)駕駛道德決策中,假設(shè)車輛面臨一個(gè)不可避免的碰撞場景,需要在保護(hù)車內(nèi)乘客和避免傷害行人之間做出選擇。以下哪種決策原則在倫理上更被接受?()A.優(yōu)先保護(hù)車內(nèi)乘客的生命安全B.隨機(jī)選擇保護(hù)對(duì)象C.基于最大多數(shù)人的利益進(jìn)行決策D.這是一個(gè)無法確定的道德困境,沒有明確的決策原則29、在人工智能的教育應(yīng)用中,個(gè)性化學(xué)習(xí)系統(tǒng)可以根據(jù)學(xué)生的學(xué)習(xí)情況提供定制的學(xué)習(xí)內(nèi)容和建議。假設(shè)要開發(fā)一個(gè)這樣的系統(tǒng),需要準(zhǔn)確評(píng)估學(xué)生的知識(shí)水平和學(xué)習(xí)能力。以下哪種評(píng)估方法和模型在實(shí)現(xiàn)個(gè)性化學(xué)習(xí)方面最為準(zhǔn)確和有效?()A.基于標(biāo)準(zhǔn)化測試的評(píng)估B.基于學(xué)習(xí)行為數(shù)據(jù)的動(dòng)態(tài)評(píng)估C.教師的主觀評(píng)價(jià)D.同學(xué)之間的相互評(píng)價(jià)30、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,引起了廣泛關(guān)注。假設(shè)要利用預(yù)訓(xùn)練語言模型進(jìn)行特定任務(wù)的微調(diào)。以下關(guān)于預(yù)訓(xùn)練語言模型的描述,哪一項(xiàng)是不正確的?()A.預(yù)訓(xùn)練語言模型在大規(guī)模通用語料上學(xué)習(xí)了語言的通用知識(shí)和模式B.微調(diào)時(shí)可以使用少量的特定任務(wù)數(shù)據(jù),快速適應(yīng)新的任務(wù)C.預(yù)訓(xùn)練語言模型的參數(shù)規(guī)模越大,性能一定越好D.可以根據(jù)具體需求對(duì)預(yù)訓(xùn)練語言模型的輸出進(jìn)行進(jìn)一步的處理和優(yōu)化二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)使用PyTorch框架,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年預(yù)料不到的考試題及答案
- 2025年上半年教師資格考試《幼兒園保教知識(shí)與能力》真題及答案解析
- 2025年育嬰師職業(yè)技能等級(jí)證書理論考試練習(xí)題及答案
- 2025年藥品質(zhì)量與安全(藥品質(zhì)量基礎(chǔ)與藥品質(zhì)量與安全)試卷及答案
- 機(jī)電設(shè)備安裝項(xiàng)目成本控制方案
- 2025年檢驗(yàn)員培訓(xùn)考試題及答案
- 2024年幼兒園《綜合素質(zhì)》考試習(xí)題及答案
- 2026年高考監(jiān)考考核試題及答案
- 2025鄉(xiāng)村醫(yī)生家庭醫(yī)生簽約服務(wù)培訓(xùn)試題及答案
- 中學(xué)語文試卷試題及答案
- 北京市昌平區(qū)2024-2025學(xué)年三年級(jí)上學(xué)期期末數(shù)學(xué)試題
- 口腔診所前臺(tái)接待流程與話術(shù)模板
- 15萬噸電解鋁工程施工組織設(shè)計(jì)
- 超精密加工技術(shù)期末考試
- 犍為經(jīng)開區(qū)馬邊飛地化工園區(qū)污水處理廠環(huán)評(píng)報(bào)告
- 學(xué)困生轉(zhuǎn)換課件
- 食堂干貨調(diào)料配送方案(3篇)
- 腫瘤病人免疫治療及護(hù)理
- 醫(yī)院住院部2024工作總結(jié)及2025工作計(jì)劃
- 門診護(hù)理工作流程
- 委托加工方案模板(3篇)
評(píng)論
0/150
提交評(píng)論