中考數(shù)學(xué)總復(fù)習(xí)《 圓》考前沖刺練習(xí)試題及參考答案詳解(典型題)_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考前沖刺練習(xí)試題及參考答案詳解(典型題)_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考前沖刺練習(xí)試題及參考答案詳解(典型題)_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考前沖刺練習(xí)試題及參考答案詳解(典型題)_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考前沖刺練習(xí)試題及參考答案詳解(典型題)_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》考前沖刺練習(xí)試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知扇形的圓心角為,半徑為,則弧長為(

)A. B. C. D.2、如圖,點A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(

)A.160o B.120o C.100o D.80o3、如圖,、分別切于點、,點為優(yōu)弧上一點,若,則的度數(shù)為(

)A. B. C. D.4、如圖,在?ABCD中,為的直徑,⊙O和相切于點E,和相交于點F,已知,,則的長為(

)A. B. C. D.25、下列說法:(1)長度相等的弧是等?。唬?)弦不包括直徑;(3)劣弧一定比優(yōu)弧短;(4)直徑是圓中最長的弦.其中正確的有(

)A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、數(shù)學(xué)課上,老師讓學(xué)生用尺規(guī)作圖畫Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.小明的作法如圖所示,你認為小明這種作法中判斷∠ACB是直角的依據(jù)是_____.2、如圖所示的網(wǎng)格由邊長為個單位長度的小正方形組成,點、、、在直角坐標系中的坐標分別為,,,則內(nèi)心的坐標為______.3、如圖所示,AB、AC為⊙O的兩條弦,延長CA到點D,AD=AB,若∠ADB=35°,則∠BOC=________.4、如圖,在中,半徑,是半徑上一點,且.,是上的兩個動點,,是的中點,則的長的最大值等于__________.5、如圖,I是△ABC的內(nèi)心,∠B=60°,則∠AIC=_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,,以為直徑的⊙與交于點,連接.(1)求證:;(2)若⊙與相切,求的度數(shù);(3)用無刻度的直尺和圓規(guī)作出劣弧的中點.(不寫作法,保留作圖痕跡)2、如圖,直線l:y=2x+1與拋物線C:y=2x2+bx+c相交于點A(0,m),B(n,7).(1)填空:m=,n=,拋物線的解析式為.(2)將直線l向下移a(a>0)個單位長度后,直線l與拋物線C仍有公共點,求a的取值范圍.(3)Q是拋物線上的一個動點,是否存在以AQ為直徑的圓與x軸相切于點P?若存在,請求出點P的坐標;若不存在,請說明理由.3、正方形ABCD的四個頂點都在⊙O上,E是⊙O上的一點.(1)如圖①,若點E在上,F(xiàn)是DE上的一點,DF=BE.求證:△ADF≌△ABE;(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE-BE=AE.請說明理由;(3)如圖②,若點E在上.連接DE,CE,已知BC=5,BE=1,求DE及CE的長.4、如圖,已知⊙O為Rt△ABC的內(nèi)切圓,切點分別為D,E,F(xiàn),且∠C=90°,AB=13,BC=12.(1)求BF的長;(2)求⊙O的半徑r.5、已知圓弧的半徑為15厘米,圓弧的長度為,求圓心角的度數(shù).-參考答案-一、單選題1、D【解析】【分析】根據(jù)扇形的弧長公式計算即可.【詳解】∵扇形的圓心角為30°,半徑為2cm,∴弧長cm故答案為:D.【考點】本題主要考查扇形的弧長,熟記扇形的弧長公式是解題的關(guān)鍵.2、A【解析】【分析】在⊙O取點,連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點,連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對的圓心角是它所對的圓周角的2倍,掌握相關(guān)知識點是解題的關(guān)鍵.3、C【解析】【分析】要求∠ACB的度數(shù),只需根據(jù)圓周角定理構(gòu)造它所對的弧所對的圓心角,即連接OA,OB;再根據(jù)切線的性質(zhì)以及四邊形的內(nèi)角和定理即可求解.【詳解】解:連接OA,OB,∵PA、PB分別切⊙O于點A、B,∴OA⊥AP,OB⊥BP,∴∠PAO=∠PBO=90°,∴∠AOB+∠APB=180°,∵∠AOB=2∠ACB,∠ACB=∠APB,∴3∠ACB=180°,∴∠ACB=60°,故選:C.【考點】此題考查了切線的性質(zhì),圓周角定理,以及四邊形的內(nèi)角和,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.4、C【解析】【分析】首先求出圓心角∠EOF的度數(shù),再根據(jù)弧長公式,即可解決問題.【詳解】解:如圖連接OE、OF,∵CD是⊙O的切線,∴OE⊥CD,∴∠OED=90°,∵四邊形ABCD是平行四邊形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°-∠D-∠DFO-∠DEO=30°,∴的長.故選:C.【考點】本題考查切線的性質(zhì)、平行四邊形的性質(zhì)、弧長公式等知識,解題的關(guān)鍵是求出圓心角的度數(shù),記住弧長公式.5、A【解析】【分析】根據(jù)等弧的定義、弦的定義、弧的定義、分別判斷后即可確定正確的選項.【詳解】解:(1)長度相等的弧不一定是等弧,弧的度數(shù)必須相同,故錯誤;(2)直徑是圓中最長的弦,故(2)錯誤,(4)正確;(3)同圓或等圓中劣弧一定比優(yōu)弧短,故錯誤;正確的只有一個,故選:A.【考點】本題考查了圓的有關(guān)定義,能夠了解圓的有關(guān)知識是解答本題的關(guān)鍵,難度不大.二、填空題1、直徑所對的圓周角是直角【解析】【分析】根據(jù)圓周角定理即可得出結(jié)論.【詳解】解:根據(jù)“直徑所對的圓周角是直角”得出.故答案為直徑所對的圓周角是直角.【考點】本題考查的是圓周角定理,熟知直徑所對的圓周角是直角是解答此題的關(guān)鍵.2、(2,3)【解析】【分析】根據(jù)A、B、C三點的坐標建立如圖所示的坐標系,計算出△ABC各邊的長度,易得該三角形是直角三角形,設(shè)BC的關(guān)系式為:y=kx+b,求出BC與x軸的交點G的坐標,證出點A與點G關(guān)于BD對稱,射線BD是∠ABC的平分線,三角形的內(nèi)心在BD上,設(shè)點M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點M,過點M作ME⊥AB,過點M作MF⊥AC,且ME=MF=r,求出r的值,在△BEM中,利用勾股定理求出BM的值,即可得到點M的坐標.【詳解】解:根據(jù)A、B、C三點的坐標建立如圖所示的坐標系,根據(jù)題意可得:AB=,AC=,BC=,∵,∴∠BAC=90°,設(shè)BC的關(guān)系式為:y=kx+b,代入B,C,可得,解得:,∴BC:,當y=0時,x=3,即G(3,0),∴點A與點G關(guān)于BD對稱,射線BD是∠ABC的平分線,設(shè)點M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點M,過點M作ME⊥AB,過點M作MF⊥AC,且ME=MF=r,∵∠BAC=90°,∴四邊形MEAF為正方形,S△ABC=,解得:,即AE=EM=,∴BE=,∴BM=,∵B(-3,3),∴M(2,3),故答案為:(2,3).【考點】本題考查三角形內(nèi)心、平面直角坐標系、一次函數(shù)的解析式、勾股定理和正方形的判定與性質(zhì)等相關(guān)知識點,把握內(nèi)心是三角形內(nèi)接圓的圓心這個概念,靈活運用各種知識求解即可.3、140°【解析】【分析】在等腰中,根據(jù)三角形的外角性質(zhì)可求出外角的度數(shù);而是同弧所對的圓周角和圓心角,可根據(jù)圓周角和圓心角的關(guān)系求出的度數(shù).【詳解】△ABD中,AB=AD,則:

∴∴故答案為【考點】考查圓周角定理,在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.4、【解析】【分析】當點F與點D運動至共線時,OF長度最大,此時F是AB的中點,則OF⊥AB,設(shè)OF為x,則DF=x﹣4,在Rt△BOF中,利用勾股定理進行求解即可.【詳解】∵當點F與點D運動至共線時,OF長度最大,如圖所示,∵F是AB的中點,∴OC⊥AB,設(shè)OF為x,則DF=x﹣4,∵△ABD是等腰直角三角形,∴DF=AB=BF=x﹣4,在Rt△BOF中,OB2=OF2+BF2,∵OB=OC=6,∴,解得,或(舍去),∴OF的長的最大值等于,故答案為:.【考點】本題考查了垂徑定理,直角三角形斜邊中線的性質(zhì),勾股定理等知識,確定點F與點D運動至共線時,OF長度最大是解題的關(guān)鍵.5、120°.【解析】【分析】根據(jù)三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點即可求解.【詳解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點,∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案為120°.【考點】此題主要考查利用三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點性質(zhì)進行角度求解,熟練掌握,即可解題.三、解答題1、(1)證明見詳解(2)(3)作圖見詳解【解析】【分析】(1)根據(jù)直徑所對的圓周角是直角、等腰三角形的三線合一即可證明;(2)根據(jù)切線的性質(zhì)可以得到,然后在等腰直角三角形中即可求解;(3)根據(jù)等弧所對的圓周角相等,可知可以作出AD的垂直平分線,的角平分線,的角平分線等方法均可得到結(jié)論.(1)證明:∵是的直徑,∴,∴,∵,∴.(2)∵與相切,∴,又∵,∴.(3)如下圖,點就是所要作的的中點.【考點】本題考查了等腰三角形的三線合一、切線的性質(zhì)、以及尺規(guī)作圖、等弧所對的圓周角相等,理解圓的相關(guān)知識并掌握基本的尺規(guī)作圖方法是解題的關(guān)鍵.2、(1)1,3,y=2x2﹣4x+1(2)0<a(3)存在,P(1,0)或P(,0)【解析】【分析】(1)將A(0,m),B(n,7)代入y=2x+1,可求m、n的值,再將A(0,1),B(3,7)代入y=2x2+bx+c,可求函數(shù)解析式;(2)由題意可得y=2x+1-a,聯(lián)立,得到2x2-6x+a=0,再由判別式Δ≥0即可求a是取值范圍;(3)設(shè)Q(t,s),則,半徑,再由AQ2=t2+(s-1)2=(s+1)2,即可求t的值.(1)將A(0,m),B(n,7)代入y=2x+1,可得m=1,n=3,∴A(0,1),B(3,7),再將A(0,1),B(3,7)代入y=2x2+bx+c得,,可得,∴y=2x2﹣4x+1,故答案為:1,3,y=2x2﹣4x+1;(2)由題意可得y=2x+1﹣a,聯(lián)立,∴2x2﹣6x+a=0,∵直線l與拋物線C仍有公共點∴Δ=36﹣8a≥0,∴a,∴0<a;(3)存在以AQ為直徑的圓與x軸相切,理由如下:設(shè)Q(t,s),∴M(,),P(,0),∴半徑r,∵AQ2=t2+(s﹣1)2=(s+1)2,∴t2=4s,∵s=2t2﹣4t+1,∴t2=4(2t2﹣4t+1),∴t=2或t,∴P(1,0)或P(,0),∴以AQ為直徑的圓與x軸相切時,P點坐標為P(1,0)或P(,0).,【考點】本題考查二次函數(shù)的綜合應(yīng)用,熟練掌握二次函數(shù)的圖象及性質(zhì),平行線的性質(zhì)是解題的關(guān)鍵.3、(1)證明見解析;(2)理由見解析;(3)DE=7,CE=【解析】【分析】(1)根據(jù)正方形的性質(zhì),得AB=AD;根據(jù)圓周角的性質(zhì),得,結(jié)合DF=BE,即可完成證明;(2)由(1)結(jié)論得AF=AE,;結(jié)合∠BAD=90°,得∠EAF=90°,從而得到△EAF是等腰直角三角形,即EF=AE;最后結(jié)合DE-DF=EF,從而得到答案;(3)連接BD,將△CBE繞點C順時針旋轉(zhuǎn)90°至△CDH;結(jié)合題意,得∠CBE+∠CDE=180°,從而得到E,D,H三點共線;根據(jù)BC=CD,得,從而推導(dǎo)得∠BEC=∠DEC=45°,即△CEH是等腰直角三角形;再根據(jù)勾股定理的性質(zhì)計算,即可得到答案.【詳解】(1)如圖,,,,在正方形ABCD中,AB=AD在△ADF和△ABE中∴△ADF≌△ABE(SAS);(2)由(1)結(jié)論得:△ADF≌△ABE∴AF=AE,∠3=∠4正方形ABCD中,∠BAD=90°∴∠BAF+∠3=90°∴∠BAF+∠4=90°∴∠EAF=90°∴△EAF是等腰直角三角形∴EF2=AE2+AF2∴EF2=2AE2∴EF=AE即DE-DF=AE∴DE-BE=AE;(3)連接BD,將△CBE繞點C順時針旋轉(zhuǎn)90°至△CDH∵四邊形BCDE內(nèi)接于圓∴∠CBE+∠CDE=180°∴E,D,H三點共線在正方形ABCD中,∠BAD=90°∴∠BED=∠BAD=90°∵BC=CD∴∴∠BEC=∠DEC=45°∴△CEH是等腰直角三角形在Rt△BCD中,由勾股定理得BD=BC=5在Rt△BDE中,由勾股定理得:DE=在Rt△CEH中,由勾股定理得:EH2=CE2+CH2∴(ED+DH)2=2CE2,即(ED+BE)2=2CE2∴64=2CE2∴CE=4.【考點】本題考查了正方形、圓、等腰三角形、勾股定理、全等三角形、旋轉(zhuǎn)的知識;解題的關(guān)鍵是熟練掌握正方形、圓周角、正多邊形與圓、等腰三角形、勾股定理、全等三角形、旋轉(zhuǎn)的性質(zhì),從而完成求解.4、(1)BF=10;(2)r=2.【解析】【分析】(1)設(shè)BF=BD=x,利用切線長定理,構(gòu)建方程解決問題即可.(2)證明四邊形OECF是矩形,推出OE=CF即可解決問題.【詳解】解:(1)在Rt△ABC中,∵∠C=90°,AB=13,BC=12,∴AC===5,∵⊙O為Rt△ABC的內(nèi)切圓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論