重難點解析人教版8年級數(shù)學上冊《全等三角形》定向攻克練習題(含答案詳解)_第1頁
重難點解析人教版8年級數(shù)學上冊《全等三角形》定向攻克練習題(含答案詳解)_第2頁
重難點解析人教版8年級數(shù)學上冊《全等三角形》定向攻克練習題(含答案詳解)_第3頁
重難點解析人教版8年級數(shù)學上冊《全等三角形》定向攻克練習題(含答案詳解)_第4頁
重難點解析人教版8年級數(shù)學上冊《全等三角形》定向攻克練習題(含答案詳解)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,△ABC中,已知∠B=∠C,點E,F(xiàn),P分別是AB,AC,BC上的點,且BE=CP,BP=CF,若∠A=112°,則∠EPF的度數(shù)是(

)A.34° B.36° C.38° D.40°2、如圖,在和中,,則下列結論中錯誤的是(

)A. B. C. D.E為BC中點3、如圖,在和中,,連接交于點,連接.下列結論:①;②;③平分;④平分.其中正確的個數(shù)為().A.4 B.3 C.2 D.14、如圖,在△ABC中,AD是BC邊上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,連接FG,交DA的延長線于點E,連接BG,CF,則下列結論:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正確的有(

)A.①②③ B.①②④ C.①③④ D.①②③④5、在正方形網格中,∠AOB的位置如圖所示,到∠AOB兩邊距離相等的點應是(

)A.點M B.點N C.點P D.點Q第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、已知∠AOB=60°,以O為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內交于點P,以OP為邊作∠POC=15°,則∠BOC的度數(shù)為__________.2、如圖是由九個邊長為1的小正方形拼成的大正方形,圖中∠1+∠2+∠3+∠4+∠5的度數(shù)為______.3、如圖,已知△ABC≌△DBE,∠A=36°,∠B=40°,則∠AED的度數(shù)為_____.4、如圖,若△ABC≌△ADE,且∠1=35°,則∠2=_____.5、如圖,在矩形ABCD中,AB=8cm,AD=12cm,點P從點B出發(fā),以2cm/s的速度沿BC邊向點C運動,到達點C停止,同時,點Q從點C出發(fā),以vcm/s的速度沿CD邊向點D運動,到達點D停止,規(guī)定其中一個動點停止運動時,另一個動點也隨之停止運動.當v為______時,△ABP與△PCQ全等.三、解答題(5小題,每小題10分,共計50分)1、正方形ABCD中,E為BC上的一點,F(xiàn)為CD上的一點,,求的度數(shù).2、如圖,是邊長為2的等邊三角形,是頂角為120°的等腰三角形,以點為頂點作,點、分別在、上.(1)如圖①,當時,則的周長為______;(2)如圖②,求證:.3、已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求證:AC=BD;(2)求∠APB的度數(shù).4、如圖,等腰三角形中,,.作于點,將線段繞著點順時針旋轉角后得到線段,連接.(1)求證:;(2)延長線段,交線段于點.求的度數(shù)(用含有的式子表示).5、如圖,在中,AB=AC,D是BA延長線上一點,E是AC的中點,連接DE并延長,交BC于點M,∠DAC的平分線交DM于點F.求證:AF=CM.-參考答案-一、單選題1、A【解析】【分析】由三角形內角和定理可得∠B=∠C=34°,由△EBP≌△PCF可得∠EPB=∠PFC,再由三角形外角的性質便可解答;【詳解】解:△BAC中,∠B=∠C,∠A=112°,則∠B=∠C=34°,△EBP和△PCF中:BE=CP,∠EBP=∠PCF,BP=CF,∴△EBP≌△PCF(SAS),∴∠EPB=∠PFC,∵∠BPF=∠EPB+∠EPF=∠C+∠PFC,∴∠EPF=∠C=34°,故選:A.【考點】本題考查了三角形內角和定理,全等三角形的判定和性質,三角形外角的性質;掌握全等三角形的判定定理和性質是解題關鍵.2、D【解析】【分析】首先證明,推出,,由,推出,推出,即可一一判斷.【詳解】解:∵,∴和為直角三角形,在和中,,∴,∴,,,∵,∴,∴,故A、B、C正確,故選:D.【考點】本題主要考查全等三角形的判定和性質,解題的關鍵是熟練掌握全等三角形的判定和性質.3、B【解析】【分析】根據(jù)題意逐個證明即可,①只要證明,即可證明;②利用三角形的外角性質即可證明;④作于,于,再證明即可證明平分.【詳解】解:∵,∴,即,在和中,,∴,∴,①正確;∴,由三角形的外角性質得:∴°,②正確;作于,于,如圖所示:則°,在和中,,∴,∴,∴平分,④正確;正確的個數(shù)有3個;故選B.【考點】本題是一道幾何的綜合型題目,難度系數(shù)偏上,關鍵在于利用三角形的全等證明來證明線段相等,角相等.4、D【解析】【分析】證得△CAF≌△GAB(SAS),從而推得①正確;利用△CAF≌△GAB及三角形內角和與對頂角,可判斷②正確;證明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,則③正確,同理△ANG≌△CDA,得出NG=AD,則FM=NG,證明△FME≌△GNE(AAS).可得出結論④正確.【詳解】解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正確;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC與AG所交的對頂角相等,∴BG與FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正確;過點F作FM⊥AE于點M,過點G作GN⊥AE交AE的延長線于點N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正確,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正確.故選:D.【考點】本題綜合考查了全等三角形的判定與性質及等腰三角形的三線合一性質與互余、對頂角,三角形內角和等幾何基礎知識.熟練掌握全等三角形的判定與性質是解題的關鍵.5、A【解析】【分析】利用到角的兩邊的距離相等的點在角的平分線上進行判斷.【詳解】點P、Q、M、N中在∠AOB的平分線上的是M點.故選:A.【考點】本題主要考查了角平分線的性質,根據(jù)正方形網格看出∠AOB平分線上的點是解答問題的關鍵.二、填空題1、或【解析】【分析】以O為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在內交于點P,則OP為的平分線,以OP為邊作,則為作或的角平分線,即可求解.【詳解】解:以O為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在內交于點P,得到OP為的平分線,再以OP為邊作,則為作或的角平分線,所以或.故答案為:或.【考點】本題考查的是復雜作圖,主要要理解作圖是在作角的平分線,同時要考慮以OP為邊作的兩種情況,避免遺漏.2、225°【解析】【分析】首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,即可求得∠1+∠2+∠3+∠4+∠5的值.【詳解】解:如圖所示:在△ABC和△AEF中,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在Rt△ABD和Rt△AEH中,∴Rt△ABD≌Rt△AEH(HL),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案為:225°.【考點】此題主要考查了全等三角形的判定和性質,關鍵是掌握全等三角形的性質:全等三角形對應角相等即可求解.3、76°或76度【解析】【分析】根據(jù)全等三角形的性質得到∠A=∠D=36°,根據(jù)三角形的外角的性質即可得出答案.【詳解】解:∵△ABC≌△DBE,∴∠A=∠D=36°,∵∠AED是△BDE的外角,∴∠AED=∠B+∠D=40°+36°=76°.故答案為:76°.【考點】本題考查了全等三角形的性質及三角形外角的性質,掌握全等三角形的對應角相等是解題的關鍵.4、35°.【解析】【分析】根據(jù)全等的性質可得:∠EAD=∠CAB,再根據(jù)等式的基本性質可得∠1=∠2=35°.【詳解】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∴∠EAD-∠CAD=∠CAB-∠CAD,∴∠2=∠1=35°.故答案為35°.【考點】此題考查的是全等三角形的性質,掌握全等三角形的對應角相等是解決此題的關鍵.5、2或【解析】【詳解】可分兩種情況:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分別計算出t的值,進而得到v的值.【解答】解:①當BP=CQ,AB=PC時,△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②當BA=CQ,PB=PC時,△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,解得:v=,綜上所述,當v=2或時,△ABP與△PQC全等,故答案為:2或.【考點】此題考查了動點問題,全等三角形的性質的應用,解一元一次方程,正確理解全等三角形的性質得到相等的對應邊求出t是解題的關鍵.三、解答題1、45°【解析】【分析】延長EB使得BG=DF,易證△ABG≌△ADF(SAS)可得AF=AG,進而求證△AEG≌△AEF可得∠EAG=∠EAF,再求出∠EAG+∠EAF=90°即可解題.【詳解】解:如圖,延長EB到點G,使得,連接AG.在正方形ABCD中,,,.在和中,,,,.又,在和中,,,.,,,.【考點】本題考查了正方形的性質,全等三角形的判定與性質,作出輔助線構造出全等三角形是解決此題的關鍵.2、(1)4;(2)見解析【解析】【分析】(1)首先證明△BDM≌△CDN,進而得出△DMN是等邊三角形,∠BDM=∠CDN=30°,NC=BM=DM=MN,即可解決問題;(2)延長至點,使得,連接,首先證明,再證明,得出,進而得出結果即可.【詳解】解:(1)∵是等邊三角形,,,∴是等邊三角形,,則,∵是頂角的等腰三角形,,,在和中,,,,∵,∴是等邊三角形,,,,∴的周長.(2)如圖,延長至點,使得,連接,∵是等邊三角形,是頂角的等腰三角形,,,,,在和中,,,,,∵,,在和中,.,又∵,.【考點】本題考查了全等三角形的判定與性質及等邊三角形的性質及等腰三角形的性質,掌握全等三角形的性質與判定,等邊三角形及等腰三角形的性質是解題的關鍵.3、(1)見解析;(2)【解析】【分析】(1)通過證明,即可求證;(2)利用三角形外角的性質可得,由(1)可得,從而得到,利用三角形內角和的性質即可求解.(1)證明:∵,∴,又∵OA=OB,OC=OD,∴,∴;(2)解:由(1)可得,由三角形外角的性質可得∴,∴,【考點】此題考查了全等三角形的判定與性質,三角形內角的性質以及三角形外角的性質,解題的關鍵是熟練掌握相關基本性質.4、(1)見解析;(2)【解析】【分析】(1)根據(jù)“邊角邊”證,得到即可;(2)由(1)得,,再根據(jù)三角形內角和證明即可.【詳解】證明:線段繞點順時針旋轉角得到線段,,.,.在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論