版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
中考數(shù)學總復習《圓》復習提分資料考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知:如圖,AB是⊙O的直徑,點P在BA的延長線上,弦CD交AB于E,連接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,過E作弦GF⊥BC交圓與G、F兩點,連接CF、BG.則下列結(jié)論:①CD⊥AB;②PC是⊙O的切線;③OD∥GF;④弦CF的弦心距等于BG.則其中正確的是()A.①②④ B.③④ C.①②③ D.①②③④2、如圖,在△ABC中,AG平分∠CAB,使用尺規(guī)作射線CD,與AG交于點E,下列判斷正確的是(
)
A.AG平分CDB.C.點E是△ABC的內(nèi)心D.點E到點A,B,C的距離相等3、下列圖形為正多邊形的是()A. B. C. D.4、如圖,一段公路的轉(zhuǎn)彎處是一段圓弧,則的展直長度為()A.3π B.6π C.9π D.12π5、如圖,點A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(
)A.160o B.120o C.100o D.80o第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在中,,,以點為圓心、為半徑的圓交于點,則弧AD的度數(shù)為________度.2、如圖,一個底面半徑為3的圓錐,母線,D為的中點,一只螞蟻從點A出發(fā),沿著圓錐的側(cè)面爬行到D,則螞蟻爬行的最短路程為______.3、如圖,已知是的直徑,且,弦,點是弧上的點,連接、,若,則的長為______.4、如圖,直線、相交于點,半徑為1cm的⊙的圓心在直線上,且與點的距離為8cm,如果⊙以2cm/s的速度,由向的方向運動,那么_________秒后⊙與直線相切.5、如圖,在平面直角坐標系中,點A(0,1)、B(0,﹣1),以點A為圓心,AB為半徑作圓,交x軸于點C、D,則CD的長是____.三、解答題(5小題,每小題10分,共計50分)1、(1)求圖(1)中陰影部分的面積(單位:厘米);(2)如圖(2)所示,已知大正方形的邊長為10厘米,小正方形的邊長為7厘米,求陰影部分面積.(結(jié)果保留)2、如圖,⊙O的半徑弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.已知,.(1)求⊙O半徑的長;(2)求EC的長.3、如下圖是一個隧道的橫截面,它的形狀是以點O為圓心的圓的一部分.如果M是中弦的中點,經(jīng)過圓心O交圓O于點E,并且.求的半徑.4、如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E(1)求證:AC是⊙O的切線;(2)若OB=2,CD=,求圖中陰影部分的面積(結(jié)果保留).5、已知:如圖,、是的切線,切點分別是、,為上一點,過點作的切線,交、于、點,已知,求的周長.-參考答案-一、單選題1、A【解析】【分析】連接BD、OC、AG、AC,過O作OQ⊥CF于Q,OZ⊥BG于Z,求出∠ABC=∠ABD,從而有弧AC=弧AD,由垂徑定理的推論即可判斷①的正誤;由CD⊥PB可得到∠P+∠PCD=90°,結(jié)合∠P=∠DCO、等邊對等角的知識等量代換可得到∠PCO=90°,據(jù)此可判斷②的正誤;假設OD∥GF成立,則可得到∠ABC=30°,判斷由已知條件能否得到∠ABC的度數(shù)即可判斷③的正誤;求出CF=AG,根據(jù)垂徑定理和三角形中位線的知識可得到CQ=OZ,通過證明△OCQ≌△BOZ可得到OQ=BZ,結(jié)合垂徑定理即可判斷④.【詳解】連接BD、OC、AG,過O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直徑,∴CD⊥AB,∴①正確;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切線,∴②正確;假設OD∥GF,則∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知沒有給出∠B=30°,∴③錯誤;∵AB是直徑,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正確.故選A.【考點】本題是圓的綜合題,考查了垂徑定理及其推論,切線的判定,等腰三角形的性質(zhì),平行線的性質(zhì),全等三角形的判定與性質(zhì).解答本題的關(guān)鍵是熟練掌握圓的有關(guān)知識點.2、C【解析】【分析】根據(jù)作法可得CD平分∠ACB,結(jié)合題意即可求解.【詳解】解:由作法得CD平分∠ACB,
∵AG平分∠CAB,∴E點為△ABC的內(nèi)心故答案為:C.【考點】此題考查了尺規(guī)作圖(角平分線),以及三角形角平分線的性質(zhì),熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)正多邊形的定義:各個角都相等,各條邊都相等的多邊形叫做正多邊形可得答案.【詳解】根據(jù)正多邊形的定義,得到D中圖形是正五邊形.故選D.【考點】本題考查了正多邊形,關(guān)鍵是掌握正多邊形的定義.4、B【解析】【詳解】分析:直接利用弧長公式計算得出答案.詳解:的展直長度為:=6π(m).故選B.點睛:此題主要考查了弧長計算,正確掌握弧長公式是解題關(guān)鍵.5、A【解析】【分析】在⊙O取點,連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點,連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對的圓心角是它所對的圓周角的2倍,掌握相關(guān)知識點是解題的關(guān)鍵.二、填空題1、【解析】【分析】由三角形內(nèi)角和得∠A=90°﹣∠B=65°.再由AC=CD,∠ACD度數(shù)可求,可解.【詳解】連接CD.∵∠ACB=90°,∠B=25°,∴∠A=90°﹣∠B=65°.∵CA=CD,∴∠A=∠CDA=65°,∴∠ACD=180°﹣2∠A=50°,∴弧AD的度數(shù)是50度.【考點】本題考查了直角三角形,三角形內(nèi)角和定理和圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.2、【解析】【分析】先畫出圓錐側(cè)面展開圖(見解析),再利用弧長公式求出圓心角的度數(shù),然后利用等邊三角形的判定與性質(zhì)、勾股定理可得,最后根據(jù)兩點之間線段最短即可得.【詳解】畫出圓錐側(cè)面展開圖如下:如圖,連接AB、AD,設圓錐側(cè)面展開圖的圓心角的度數(shù)為,因為圓錐側(cè)面展開圖是一個扇形,扇形的弧長等于底面圓的周長,扇形的半徑等于母線長,所以,解得,則,又,是等邊三角形,點D是BC的中點,,,在中,,由兩點之間線段最短可知,螞蟻爬行的最短路程為,故答案為:.【考點】本題考查了圓錐側(cè)面展開圖、弧長公式、等邊三角形的判定與性質(zhì)等知識點,熟練掌握圓錐側(cè)面展開圖是解題關(guān)鍵.3、9【解析】【分析】連接OC和OE,由同弧所對的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點】本題考查了圓周角定理及垂徑定理等相關(guān)知識點,本題的關(guān)鍵是求出∠COB=60°.4、3或5【解析】【分析】分類討論:當點P在當點P在射線OA時⊙P與CD相切,過P作PE⊥CD與E,根據(jù)切線的性質(zhì)得到PE=1cm,再利用含30°的直角三角形三邊的關(guān)系得到OP=2PE=2cm,則⊙P的圓心在直線AB上向右移動了(8-2)cm后與CD相切,即可得到⊙P移動所用的時間;當點P在射線OB時⊙P與CD相切,過P作PE⊥CD與F,同前面一樣易得到此時⊙P移動所用的時間.【詳解】當點P在射線OA時⊙P與CD相切,如圖,過P作PE⊥CD與E,∴PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P的圓心在直線AB上向右移動了(8-2)cm后與CD相切,∴⊙P移動所用的時間==3(秒);當點P在射線OB時⊙P與CD相切,如圖,過P作PE⊥CD與F,∴PF=1cm,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm,∴⊙P的圓心在直線AB上向右移動了(8+2)cm后與CD相切,∴⊙P移動所用的時間==5(秒).故答案為3或5.【考點】本題考查直線與圓的位置關(guān)系:直線與有三種位置關(guān)系(相切、相交、相離).也考查了切線的性質(zhì).解題關(guān)鍵是熟練掌握以上性質(zhì).5、【解析】【分析】根據(jù)題意在中求出,利用垂徑定理得出結(jié)果.【詳解】由題意,在中,,,由垂徑定理知,,故答案為:.【考點】本題考查了勾股定理及垂徑定理,熟練掌握垂徑定理是解決本題的關(guān)鍵.三、解答題1、(1)圖(1)中陰影部分的面積為4平方厘米;(2)陰影部分面積為平方厘米.【解析】【分析】(1)由圖可知,圖(1)中右邊正方形中的陰影部分的面積等于左邊正方形中的空白部分的面積,通過割補法可得陰影部分的面積為一個正方形的面積,計算即可得解;(2)陰影部分的面積=梯形ABCG的面積+扇形GCE的面積-三角形ABE的面積,據(jù)此解答即可.【詳解】解:(1)由圖可知,圖(1)中右邊正方形中的陰影部分的面積等于左邊正方形中的空白部分的面積,∴S陰影=2×2=4(平方厘米);(2)如圖,S陰影=S梯形ABCG+S扇形GCE-S△ABE==25π(平方厘米).【考點】本題考查了扇形的面積,梯形的面積,三角形的面積,正方形的面積等知識.解題的關(guān)鍵是把陰影部分分成常見的平面圖形的和與差,進一步求得面積.2、(1);(2)【解析】【分析】(1)根據(jù)垂徑定理可得,再由勾股定理可求得半徑的長;(2)連接構(gòu)造出,利用勾股定理可求得,再利用勾股定理解即可求得答案.【詳解】解:(1)∵,∴∴設的半徑∴∵在中,∴∴∴半徑的長為.(2)連接,如圖:∵是的直徑∴,∵∴在中,∵∴在中,∴.【考點】本題考查了垂徑定理、勾股定理、圓周角定理等,做出合適的輔助線是解題的關(guān)鍵.3、【解析】【分析】連接CO,利用垂徑定理求解再令⊙O的半徑為rm,利用勾股定理建立方程求解半徑即可得到答案.【詳解】解:連接CO.∵M是弦CD的中點,且EM經(jīng)過圓心O,∴EM⊥CD,且CM=CD=×4=2.在Rt△OCM中,令⊙O的半徑為rm,∵OC2=OM2+CM2,∴,解得:r=.【考點】本題考查的是垂徑定理的應用,勾股定理的應用,掌握利用垂徑定理構(gòu)建直角三角形是解題的關(guān)鍵.4、(1)見解析;(2)【解析】【分析】(1)欲證明AC是⊙O的切線,只要證明OD⊥AC即可.(2)證明△OBE是等邊三角形即可解決問題.【詳解】(1)證明:連接OD,如圖,∵BD為∠ABC平分線,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴OD⊥AC,∴AC是⊙O的切線.(2)過O作OG⊥BC,連接OE,則四邊形ODCG為矩形,∴GC=OD=OB=2,OG=CD=,在Rt△OBG中,利用勾股定理得:BG=1,∴BE=2,則△OBE是等邊三角形,∴陰影部分面積為﹣×2×=.【考點】本題考查切線的判定和性質(zhì),等邊三角形的判定和性質(zhì),思想的面積公式等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.5、的周長是.【解析】【分析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年江西服裝學院單招職業(yè)技能考試模擬試題附答案詳解
- 2026年江蘇經(jīng)貿(mào)職業(yè)技術(shù)學院高職單招職業(yè)適應性考試備考試題帶答案解析
- 2026年四川交通職業(yè)技術(shù)學院高職單招職業(yè)適應性測試參考題庫帶答案解析
- 2026年湖南工業(yè)職業(yè)技術(shù)學院高職單招職業(yè)適應性測試備考試題帶答案解析
- 2025年護理事業(yè)編考試面試真題及答案
- 2025年廣西柳州人事考試及答案
- 《建筑裝飾設計》課件-項目1:設計基礎理論
- 2025年遂溪教師招聘筆試真題及答案
- 2025年助理執(zhí)業(yè)第一單元筆試及答案
- 安全維穩(wěn)培訓課件
- 體育賽事組織團隊職責分配
- 現(xiàn)代農(nóng)業(yè)生產(chǎn)與經(jīng)營管理
- 2024-2025學年上海市普陀區(qū)五年級(上)期末數(shù)學試卷(含答案)
- DG-TG08-12-2024 普通中小學建設標準
- 2025新高考數(shù)學核心母題400道(教師版)
- 《民用建筑集中空調(diào)自動控制系統(tǒng)技術(shù)標準》
- 民警進校園安全教育
- 《彩超引導下球囊擴張在血管通路狹窄中的應用》
- 《電力建設工程施工安全管理導則》(NB∕T 10096-2018)
- 【MOOC】金融風險管理-中央財經(jīng)大學 中國大學慕課MOOC答案
- 混凝土耐久性評估研究
評論
0/150
提交評論