中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫(kù)附參考答案詳解【奪分金卷】_第1頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫(kù)附參考答案詳解【奪分金卷】_第2頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫(kù)附參考答案詳解【奪分金卷】_第3頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫(kù)附參考答案詳解【奪分金卷】_第4頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫(kù)附參考答案詳解【奪分金卷】_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中考數(shù)學(xué)總復(fù)習(xí)《圓》高分題庫(kù)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,AB是半圓的直徑,點(diǎn)D是弧AC的中點(diǎn),∠ABC=50°,則∠BCD=()A.105° B.110° C.115° D.120°2、如圖,在中,,,,以點(diǎn)為圓心,為半徑的圓與相交于點(diǎn),則的長(zhǎng)為(

)A.2 B. C.3 D.3、如圖,△ABC內(nèi)接于⊙O,∠A=50°.E是邊BC的中點(diǎn),連接OE并延長(zhǎng),交⊙O于點(diǎn)D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°4、如圖,在中,,cm,cm.是邊上的一個(gè)動(dòng)點(diǎn),連接,過(guò)點(diǎn)作于,連接,在點(diǎn)變化的過(guò)程中,線段的最小值是(

)A.1 B. C.2 D.5、以原點(diǎn)O為圓心的圓交x軸于A、B兩點(diǎn),交y軸的正半軸于點(diǎn)C,D為第一象限內(nèi)⊙O上的一點(diǎn),若∠DAB=25°,則∠OCD=(

).A.50° B.40° C.70° D.30°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在⊙O中,是⊙O的直徑,,點(diǎn)是點(diǎn)關(guān)于的對(duì)稱點(diǎn),是上的一動(dòng)點(diǎn),下列結(jié)論:①;②;③;④的最小值是10.上述結(jié)論中正確的個(gè)數(shù)是_________.2、如圖,I是△ABC的內(nèi)心,∠B=60°,則∠AIC=_____.3、如圖,正五邊形ABCDE內(nèi)接于⊙O,點(diǎn)F在上,則∠CFD=_____度.4、如圖,分別以等邊三角形的每個(gè)頂點(diǎn)為圓心、以邊長(zhǎng)為半徑,在另兩個(gè)頂點(diǎn)間作一段圓弧,三段圓弧圍成的曲邊三角形稱為勒洛三角形.若等邊三角形的邊長(zhǎng)為,則勒洛三角形的周長(zhǎng)為_(kāi)____.5、如圖,從一塊半徑為的圓形鐵皮上剪出一個(gè)圓周角為120°的扇形,如果將剪下來(lái)的扇形圍成一個(gè)圓錐,則該圓錐的底面圓的半徑為_(kāi)________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖所示,,.(1)已知,求以為直徑的半圓面積及扇形的面積;(2)若的長(zhǎng)度未知,已知陰影甲的面積為16平方厘米,能否求陰影乙的面積?若能,請(qǐng)直接寫(xiě)出結(jié)果;若不能,請(qǐng)說(shuō)明理由.2、如圖,一根長(zhǎng)的繩子,一端拴在柱子上,另一端拴著一只羊(羊只能在草地上活動(dòng)),請(qǐng)畫(huà)出羊的活動(dòng)區(qū)域.3、如圖,在△ABC中,AB=AC,∠BAC=120°,點(diǎn)D在邊BC上,⊙O經(jīng)過(guò)點(diǎn)A和點(diǎn)B且與邊BC相交于點(diǎn)D.(1)判斷AC與⊙O的位置關(guān)系,并說(shuō)明理由.(2)當(dāng)CD=5時(shí),求⊙O的半徑.4、如圖,在⊙O中,,∠ACB=60°,求證∠AOB=∠BOC=∠COA.5、在下列正多邊形中,是中心,定義:為相應(yīng)正多邊形的基本三角形.如圖1,是正三角形的基本三角形;如圖2,是正方形的基本三角形;如圖3,為正邊形…的基本三角形.將基本繞點(diǎn)逆時(shí)針旋轉(zhuǎn)角度得.(1)若線段與線段相交點(diǎn),則:圖1中的取值范圍是________;圖3中的取值范圍是________;(2)在圖1中,求證(3)在圖2中,正方形邊長(zhǎng)為4,,邊上的一點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為,若有最小值時(shí),求出該最小值及此時(shí)的長(zhǎng)度;(4)如圖3,當(dāng)時(shí),直接寫(xiě)出的值.-參考答案-一、單選題1、C【解析】【分析】連接AC,然后根據(jù)圓內(nèi)接四邊形的性質(zhì),可以得到∠ADC的度數(shù),再根據(jù)點(diǎn)D是弧AC的中點(diǎn),可以得到∠DCA的度數(shù),直徑所對(duì)的圓周角是90°,從而可以求得∠BCD的度數(shù).【詳解】解:連接AC,∵∠ABC=50°,四邊形ABCD是圓內(nèi)接四邊形,∴∠ADC=130°,∵點(diǎn)D是弧AC的中點(diǎn),∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直徑,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故選:C.【考點(diǎn)】本題考查圓周角定理、圓心角、弧、弦的關(guān)系,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.2、C【解析】【分析】過(guò)C點(diǎn)作CH⊥AB于H點(diǎn),在△ABC、△CBH中由分別求出BC和BH,再由垂徑定理求出BD,進(jìn)而AD=AB-BD即可求解.【詳解】解:過(guò)C點(diǎn)作CH⊥AB于H點(diǎn),如下圖所示:∵∠ACB=90°,∠A=30°,∴△ABC、△CBH均為30°、60°、90°直角三角形,其三邊之比為,Rt△ABC中,,Rt△BCH中,,由垂徑定理可知:,∴,故選:C.【考點(diǎn)】本題考查了直角三角形30°角所對(duì)直角邊等于斜邊的一半,垂徑定理等知識(shí)點(diǎn),熟練掌握垂徑定理是解決本題的關(guān)鍵.3、B【解析】【分析】連接CD,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠CDB=180°﹣∠A=130°,根據(jù)垂徑定理得到OD⊥BC,求得BD=CD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點(diǎn),∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點(diǎn)】本題考查了圓內(nèi)接四邊形的性質(zhì),垂徑定理,等腰三角形的性質(zhì)等知識(shí).正確理解題意是解題的關(guān)鍵.4、A【解析】【分析】由∠AEC=90°知,點(diǎn)E在以AC為直徑的⊙M的上(不含點(diǎn)C、可含點(diǎn)N),從而得BE最短時(shí),即為連接BM與⊙M的交點(diǎn)(圖中點(diǎn)E′點(diǎn)),BE長(zhǎng)度的最小值BE′=BM?ME′.【詳解】如圖,由題意知,,在以為直徑的的上(不含點(diǎn)、可含點(diǎn),最短時(shí),即為連接與的交點(diǎn)(圖中點(diǎn)點(diǎn)),在中,,,則.,長(zhǎng)度的最小值,故選:.【考點(diǎn)】本題主要考查了勾股定理,圓周角定理,三角形的三邊關(guān)系等知識(shí)點(diǎn),難度偏大,解題時(shí),注意輔助線的作法.5、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點(diǎn)】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應(yīng)用,主要考查學(xué)生的推理能力,題目比較典型,難度適中.二、填空題1、3【解析】【分析】①根據(jù)點(diǎn)是點(diǎn)關(guān)于的對(duì)稱點(diǎn)可知,進(jìn)而可得;②根據(jù)一條弧所對(duì)的圓周角等于圓心角的一半即可得結(jié)論;③根據(jù)等弧對(duì)等角,可知只有當(dāng)和重合時(shí),,;④作點(diǎn)關(guān)于的對(duì)稱點(diǎn),連接,DF,此時(shí)的值最短,等于的長(zhǎng),然后證明DF是的直徑即可得到結(jié)論.【詳解】解:,點(diǎn)是點(diǎn)關(guān)于的對(duì)稱點(diǎn),,,①正確;,∴②正確;的度數(shù)是60°,的度數(shù)是120°,∴只有當(dāng)和重合時(shí),,∴只有和重合時(shí),,③錯(cuò)誤;作關(guān)于的對(duì)稱點(diǎn),連接,交于點(diǎn),連接交于點(diǎn),此時(shí)的值最短,等于的長(zhǎng).連接,并且弧的度數(shù)都是60°,是的直徑,即,∴當(dāng)點(diǎn)與點(diǎn)重合時(shí),的值最小,最小值是10,∴④正確.故答案為:3.【考點(diǎn)】本題考查了圓的綜合知識(shí),涉及圓周角、圓心角、弧、弦的關(guān)系、最短距離的確定等,掌握?qǐng)A的基本性質(zhì)并靈活運(yùn)用是解題關(guān)鍵.2、120°.【解析】【分析】根據(jù)三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn)即可求解.【詳解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn),∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案為120°.【考點(diǎn)】此題主要考查利用三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn)性質(zhì)進(jìn)行角度求解,熟練掌握,即可解題.3、36.【解析】【分析】連接OC,OD.求出∠COD的度數(shù),再根據(jù)圓周角定理即可解決問(wèn)題.【詳解】如圖,連接OC,OD.∵五邊形ABCDE是正五邊形,∴∠COD==72°,∴∠CFD=∠COD=36°,故答案為:36.【考點(diǎn)】本題考查了正多邊形和圓、圓周角定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí).4、πa【解析】【分析】首先根據(jù)等邊三角形的性質(zhì)得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧長(zhǎng)公式求出的長(zhǎng)=的長(zhǎng)=的長(zhǎng)=,那么勒洛三角形的周長(zhǎng)為【詳解】解:如圖.∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的長(zhǎng)=的長(zhǎng)=的長(zhǎng)=,∴勒洛三角形的周長(zhǎng)為故答案為:πa.【考點(diǎn)】本題考查了弧長(zhǎng)公式,解題的關(guān)鍵是掌握(弧長(zhǎng)為l,圓心角度數(shù)為n,圓的半徑為R),也考查了等邊三角形的性質(zhì).5、【解析】【分析】連接OA,OB,證明△AOB是等邊三角形,繼而求得AB的長(zhǎng),然后利用弧長(zhǎng)公式可以計(jì)算出的長(zhǎng)度,再根據(jù)扇形圍成圓錐底面圓的周長(zhǎng)等于扇形的弧長(zhǎng)即可作答.【詳解】連接OA,OB,則∠BAO=∠BAC==60°,又∵OA=OB,∴△AOB是等邊三角形,∴AB=OA=1,∵∠BAC=120°,∴的長(zhǎng)為:,設(shè)圓錐底面圓的半徑為r故答案為.【考點(diǎn)】本題主要考查了弧長(zhǎng)公式以及扇形弧長(zhǎng)與底面圓周長(zhǎng)相等的知識(shí)點(diǎn),借助等量關(guān)系即可算出底面圓的半徑.三、解答題1、(1)半圓面積為157,扇形的面積為157;(2)能,16平方厘米.【解析】【分析】(1)我們運(yùn)用圓的面積公式求出半圓的面積,用扇形的面積公式求出扇形的面積即可.(2)我們借助第一題的解答結(jié)果,運(yùn)用等量代換的方法可以求出陰影乙的面積.【詳解】(1)因?yàn)镺B=20,所以S半圓=×(20÷2)2,=×100,≈157;S扇形BOC=××R2,=××202,≈157;答:半圓面積是157,扇形COB的面積是157.(2)能求陰影乙的面積:因?yàn)?,∠AOB=90°,∠COB=45°,所以半圓的直徑OB,△BOD的底是OB,高是半圓的半徑即OB,所以S半圓=×OB×OB,=OB2;S扇形BOC=××OB2,=××OB2;=OB2;所以S半圓=S扇形BOC,S半圓?①=S扇形?①,所以S甲=S乙,因?yàn)镾甲=16平方厘米,所以S乙=16平方厘米,答:陰影乙的面積是16平方厘米.【考點(diǎn)】此題主要考查圓及扇形的面積,解題的關(guān)鍵是熟知公式的運(yùn)用.2、見(jiàn)解析【解析】【分析】根據(jù)題意畫(huà)出兩個(gè)扇形即可得到羊的活動(dòng)區(qū)域.【詳解】解:如圖,以點(diǎn)O為圓心,5m長(zhǎng)的繩子為半徑畫(huà)弧交草地左邊界于點(diǎn)A,交OD的延長(zhǎng)線于點(diǎn)B,再以D為圓心,DB長(zhǎng)為半徑畫(huà)弧交草地的右邊界于點(diǎn)C,則扇形AOB和扇形BDC部分即為羊的活動(dòng)區(qū)域.【考點(diǎn)】本題考查了作圖﹣應(yīng)用與設(shè)計(jì)作圖、扇形面積,根據(jù)題意畫(huà)扇形是解決本題的關(guān)鍵.3、(1)AC與⊙O相切,理由見(jiàn)解析(2)⊙O的半徑為5【解析】【分析】(1)連接AO,根據(jù)等腰三角形的性質(zhì)得到∠B=∠C=30°,∠BAO=∠B=30°,求得∠AOC=60°,根據(jù)三角形的內(nèi)角和得到∠OAC=180°-60°-30°=90°,于是得到AC是⊙O的切線;(2)連接AD,推出△AOD是等邊三角形,得到AD=OD,∠ADO=60°,求得∠DAC=∠ADO-∠C=30°,得到AD=CD=5,于是得到結(jié)論.(1)解:AC是⊙O的切線,理由如下:連接AO,∵AB=AC,∠BAC=120°,∴∠B=∠C=(180°-∠BAC)=30°,∵AO=BO,∴∠BAO=∠B=30°,∴∠AOC=2∠B=60°,∴∠OAC=180°-∠AOC-∠C=180°-60°-30°=90°,∵AO是⊙O的半徑,∴AC是⊙O的切線;(2)解:連接AD,∵AO=OD,∠AOD=60°,∴△AOD是等邊三角形,∴AD=OD,∠ADO=60°,∴∠DAC=∠ADO-∠C=30°,∴∠DAC=∠C=30°,∴AD=CD=OD=5,∴⊙D的半徑為5.【考點(diǎn)】本題考查了切線的判定和性質(zhì),等腰三角形的性質(zhì),等邊三角形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.4、詳見(jiàn)解析.【解析】【詳解】試題分析:根據(jù)弧相等,則對(duì)應(yīng)的弦相等從而證明AB=AC,則△ABC易證是等邊三角形,然后根據(jù)同圓中弦相等,則對(duì)應(yīng)的圓心角相等即可證得.試題解析:證明:∵,∴AB=AC,△ABC為等腰三角形(相等的弧所對(duì)的弦相等)∵∠ACB=60°∴△ABC為等邊三角形,AB=BC=CA∴∠AOB=∠BOC=∠COA(相等的弦所對(duì)的圓心角相等)5、(1),;(2)見(jiàn)解析;(3)最小值:,此時(shí)=2+;(4)【解析】【分析】(1)根據(jù)正多邊形的中心角的定義即可解決問(wèn)題;(2)如圖1中,作OE⊥BC于E,OF⊥于F,連接.利用全等三角形的性質(zhì)分別證明:BE=,即可解決問(wèn)題;(3)如圖2中,作點(diǎn)O關(guān)于BC的對(duì)稱點(diǎn)E,連接OE交BC于K,連接交BC于點(diǎn),連接,此時(shí)的值最小,即有最小值.(4)利用等腰三角形三線合一的性質(zhì)即可解決問(wèn)題;【詳解】(1)由題意圖1中,∵△ABC是等邊三角形,O是中心,∴∠AOB=120°∴∠α的取值范圍是:0°<α≤120°,圖3中,∵ABCDEF…是正n邊形,O是中心,∴∠BOC=,∴∠α的取值范圍是:0°<α≤,故答案為:0°<α≤120°,0°<α≤.(2)如圖1中,作OE⊥BC于E,OF⊥于F,連接.∵∠OEB=∠OF=90°,根據(jù)題意,O是中心,∴OB=OC,∴∠OBE=∠,∴△OBE≌△OF(AAS),∴OE=OF,BE=F∵,∴Rt△≌Rt△(HL),∴,∴.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論