綜合解析京改版數(shù)學9年級上冊期末試卷含答案詳解(鞏固)_第1頁
綜合解析京改版數(shù)學9年級上冊期末試卷含答案詳解(鞏固)_第2頁
綜合解析京改版數(shù)學9年級上冊期末試卷含答案詳解(鞏固)_第3頁
綜合解析京改版數(shù)學9年級上冊期末試卷含答案詳解(鞏固)_第4頁
綜合解析京改版數(shù)學9年級上冊期末試卷含答案詳解(鞏固)_第5頁
已閱讀5頁,還剩37頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

京改版數(shù)學9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖,菱形ABCD中,∠BAD=60°,AC、BD交于點O,E為CD延長線上的一點,且CD=DE,連接BE分別交AC,AD于點F、G,連結(jié)OG、AE.則下列結(jié)論:①OG=AB;

②四邊形ABDE是菱形;③;其中正確的是(

)A.①② B.①③ C.②③ D.①②③2、如圖,點D、E分別在△ABC的邊BA、CA的延長線上,且DE∥BC,已知AE=3,AC=6,AD=2,則BD的長為()A.4 B.6 C.7 D.83、若函數(shù)y=(a﹣1)x2+2x+a2﹣1是二次函數(shù),則()A.a(chǎn)≠1 B.a(chǎn)≠﹣1 C.a(chǎn)=1 D.a(chǎn)=±14、如圖,在中,∠C=90°,設(shè)∠A,∠B,∠C所對的邊分別為a,b,c,則()A.c=bsinB B.b=csinB C.a(chǎn)=btanB D.b=ctanB5、如圖A、B、C在⊙O上,連接OA、OB、OC,若∠BOC=3∠AOB,劣弧AC的度數(shù)是120o,OC=.則圖中陰影部分的面積是(

)A. B. C. D.6、二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為(

)A.1個 B.2個 C.3個 D.4個二、多選題(7小題,每小題2分,共計14分)1、在Rt△ABC中,∠C=90°,當已知∠A和a時,求c,不能選擇的關(guān)系式是(

)A.c= B.c= C.c=a·tanA D.c=2、如圖所示,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使與相似,可以添加一個條件下列添加的條件中正確的是(

)A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD?CD3、如圖,下列條件能判定△ABC與△ADE相似的是(

)A. B.∠B=∠ADEC. D.∠C=∠AED4、如圖,正方形ABCD的邊長為8,點E、F分別在邊AD、BC上,將正方形沿EF折疊,使點A落在邊CD上的A′處,點B落在B′處,A′B′交BC于點G.下列結(jié)論正確的是(

)A.當A′為CD中點時,tan∠DA′E=B.當A′D∶DE∶A′E=3∶4∶5時,A′C=C.連接AA′,則AA′=EFD.當A′(點A′不與C、D重合)在CD上移動時,△A′CG周長隨著A′位置變化而變化5、如圖,已知等邊三角形ABC的邊長為2,DE是它的中位線.則下面四個結(jié)論中正確的有()A.DE=1 B.AB邊上的高為C.△CDE∽△CAB D.△CDE的面積與△CAB面積之比為1:46、如圖,AB是的直徑,C是上一點,E是△ABC的內(nèi)心,,延長BE交于點F,連接CF,AF.則下列結(jié)論正確的是(

)A. B.C.△AEF是等腰直角三角形 D.若,則7、下列說法中,不正確的是(

)A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線垂直于這條弧所對的弦C.弦的垂線必經(jīng)過這條弦所在圓的圓心D.在一個圓內(nèi)平分一條弧和平分它所對的弦的直線必經(jīng)過這個圓的圓心第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點為(0,3),它的對稱軸為直線x=1,則下列結(jié)論中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一個根在2,3之間,正確的有_______(填序號).2、如圖,點A是反比例函數(shù)圖象上一點,軸于點C且與反比例函數(shù)的圖象交于點B,,連接OA,OB,若的面積為6,則_________.3、若一元二次方程(b,c為常數(shù))的兩根滿足,則符合條件的一個方程為_____.4、如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值為_________.5、已知二次函數(shù)y=x2+bx+c的頂點在x軸上,點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)圖象上,求n的值為____.6、《九章算術(shù)》是中國古代的數(shù)學專著,是“算經(jīng)十書”(漢唐之間出現(xiàn)的十部古算書)中最重要的一種.中有下列問題:“今有邑方不知大小,各中開門.出北門八十步有木,出西門二百四十五步見木.問邑方有幾何?”意思是:如圖,點M、點N分別是正方形ABCD的邊AD、AB的中點,,,EF過點A,且步,步,已知每步約40厘米,則正方形的邊長約為__________米.7、制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴大為原來的3倍,那么擴大后長方形廣告牌的成本是_____元.四、解答題(6小題,每小題10分,共計60分)1、如圖,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,當BD的長是多少時,圖中的兩個直角三角形相似?2、如圖,為了測量一棟樓的高度,小明同學先在操場上處放一面鏡子,向后退到處,恰好在鏡子中看到樓的頂部;再將鏡子放到處,然后后退到處,恰好再次在鏡子中看到樓的頂部(在同一條直線上),測得,如果小明眼睛距地面高度,為,試確定樓的高度.3、如圖,矩形在平面直角坐標系中,交軸于點,動點從原點出發(fā),以每秒1個單位長度的速度沿軸正方向移動,移動時間為秒,過點P作垂直于軸的直線,交于點M,交或于點N,直線掃過矩形的面積為.(1)求點的坐標;(2)求直線移動過程中到點之前的關(guān)于的函數(shù)關(guān)系式;(3)在直線移動過程中,第一象限的直線上是否存在一點,使是等腰直角三角形?若存在,直接寫出點的坐標;若不存在,說明理由4、新冠肺炎疫情期間,我國各地采取了多種方式進行預防.其中,某地運用無人機規(guī)勸居民回家.如圖,無人機于空中A處測得某建筑頂部B處的仰角為,測得該建筑底部C處的俯角為.若無人機的飛行高度為,求該建筑的高度(結(jié)果取整數(shù)),參考數(shù)據(jù):,,.5、如圖,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點,連接.(1)求拋物線的解析式;(2)點在拋物線的對稱軸上,當?shù)闹荛L最小時,點的坐標為_____________;(3)點是第四象限內(nèi)拋物線上的動點,連接和.求面積的最大值及此時點的坐標;(4)若點是對稱軸上的動點,在拋物線上是否存在點,使以點、、、為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.6、某校一棵大樹發(fā)生一定的傾斜,該樹與地面的夾角.小明測得某時大樹的影子頂端在地面處,此時光線與地面的夾角;又過了一段時間,測得大樹的影子頂端在地面處,此時光線與地面的夾角,若米,求該樹傾斜前的高度(即的長度).(結(jié)果保留一位小數(shù),參考數(shù)據(jù):,,,).-參考答案-一、單選題1、D【解析】【分析】證明四邊形ABDE為平行四邊形可得OB=OD,由菱形ABCD可得AG=DG,根據(jù)三角形中位線定理可判斷①;根據(jù)等邊三角形的性質(zhì)和判定可得△ABD為等邊三角形AB=BD,從而可判斷平行四邊形ABDE是菱形,由此判斷②;借助相似三角形的性質(zhì)和判定,三角形中線有關(guān)的面積問題可判斷③.【詳解】解:∵四邊形ABCD是菱形,∴AB∥CD,AB=CD=AD,OA=OC,OB=OD,∵CD=DE,∴AB=DE.又∵AB∥DE,∴四邊形ABDE是平行四邊形,∴BG=EG,AB=DE,AG=DG,又∵OD=OB,∴OG是△BDA是中位線,∴OG=AB,故①正確;∵∠BAD=60°,AB=AD,∴△BAD是等邊三角形,∴BD=AB,∴是菱形,故②正確;∵OB=OD,AG=DG,∴OG是△ABD的中位線,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面積=△ABD的面積,△ABF的面積=△OGF的面積的4倍,AF:OF=2:1,∴△AFG的面積=△OGF的面積的2倍,又∵△GOD的面積=△AOG的面積=△BOG的面積,∴S四邊形ODGF=S△ABF;故③正確;故選:D.【考點】本題考查了菱形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、三角形中位線定理、相似三角形的判定與性質(zhì)等知識.判斷①的關(guān)鍵是三角形中位線定理的運用,②的關(guān)鍵是利用等邊三角形證明BD=AB;③的關(guān)鍵是通過相似得出面積之間的關(guān)系.2、B【解析】【分析】只需要證明△AED∽△ACB即可求解.【詳解】解∵DE∥BC,∴∠ABC=∠ADE,∠ACB=∠AED∴△AED∽△ACB∴∴∴BD=AD+AB=2+4=6.故選B.【考點】本題主要考查了平行線的性質(zhì),相似三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.3、A【解析】【分析】利用二次函數(shù)定義進行解答即可.【詳解】解:由題意得:a﹣1≠0,解得:a≠1,故選:A.【考點】本題主要考查了二次函數(shù)的定義,準確計算是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)三角函數(shù)的定義進行判斷,即可解決問題.【詳解】∵中,,、、所對的邊分別為a、b、c∴,即,則A選項不成立,B選項成立,即,則C、D選項均不成立故選:B.【考點】本題考查了三角函數(shù)的定義,熟記定義是解題關(guān)鍵.5、C【解析】【分析】首先根據(jù)∠BOC=3∠AOB,劣弧AC的度數(shù)是120o得到∠AOB=30°,從而得到∠COB為直角,然后利用S陰影=S扇形OBC-S△OEC求解即可.【詳解】解:設(shè)OB與AC相交于點E,如圖∵劣弧AC的度數(shù)是120o∴∠AOC=120°∵OA=OC∴∠OCA=∠OAC=30°∵∠BOC=3∠AOB又∵∠AOC=∠AOB+∠BOC∴∠AOC=∠AOB+3∠AOB=120°∴∠AOB=30°∴∠BOC=3∠AOB=90°在Rt△OCE中,OC=2∴OE=OCtan∠OCE=2tan30°=2×=2∴S△OEC=×2×2=2S扇形OBC=∴用S陰影=S扇形OBC-S△OEC=-2故選C.【考點】本題考查了扇形面積的計算,解直角三角形等知識.在求不規(guī)則的陰影部分的面積時常常轉(zhuǎn)化為幾個規(guī)則幾何圖形的面積的和或差.6、C【解析】【分析】①由拋物線開口方向得到,對稱軸在軸右側(cè),得到與異號,又拋物線與軸正半軸相交,得到,可得出,選項①錯誤;②把代入中得,所以②正確;③由時對應的函數(shù)值,可得出,得到,由,,,得到,選項③正確;④由對稱軸為直線,即時,有最小值,可得結(jié)論,即可得到④正確.【詳解】解:①∵拋物線開口向上,∴,∵拋物線的對稱軸在軸右側(cè),∴,∵拋物線與軸交于負半軸,∴,∴,①錯誤;②當時,,∴,∵,∴,把代入中得,所以②正確;③當時,,∴,∴,∵,,,∴,即,所以③正確;④∵拋物線的對稱軸為直線,∴時,函數(shù)的最小值為,∴,即,所以④正確.故選C.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項系數(shù)決定拋物線的開口方向和大?。敃r,拋物線向上開口;當時,拋物線向下開口;一次項系數(shù)和二次項系數(shù)共同決定對稱軸的位置:當與同號時,對稱軸在軸左;當與異號時,對稱軸在軸右.常數(shù)項決定拋物線與軸交點:拋物線與軸交于.拋物線與軸交點個數(shù)由判別式確定:時,拋物線與軸有2個交點;時,拋物線與軸有1個交點;時,拋物線與軸沒有交點.二、多選題1、BCD【解析】【分析】在Rt△ABC中,∠C=90°,sinA=變形可判斷A,在Rt△ABC中,∠C=90°,由cosA=和tanA=,可得可判斷B、D,在Rt△ABC中,∠C=90°,由tanA=,可得,由勾股定理c=,可判斷C.【詳解】解:在Rt△ABC中,∠C=90°,∵sinA=,∴c=,故選項A正確;在Rt△ABC中,∠C=90°,∵cosA=∴∵tanA=∴∴故選項B不正確;在Rt△ABC中,∠C=90°,∵tanA=∴∴c=故選項C不正確在Rt△ABC中,∠C=90°,∵tanA=∴∵cosA=∴∴故選項D不正確;不能選擇的關(guān)系式是BCD.故選擇BCD.【考點】本題主要考查解三角形,勾股定理,解題的關(guān)鍵是熟練運用三角函數(shù)的定義求解.2、ABD【解析】【分析】根據(jù)有兩組角對應相等的兩個三角形相似可對A選項判斷;根據(jù)圓周角定理和有兩組角對應相等的兩個三角形相似可對B選項判斷;根據(jù)兩組對應邊的比相等且夾角對應相等的兩個三角形相似可對C、D選項判斷.【詳解】解:A、,,,故A選項的添加條件正確;B、,,而,,,故B選項的添加條件正確;C、∵AD·AB=CD·BD,∴AD∶BD=CD∶AB,又∵∠ADC≠∠B,∴無法證明與相似,故C選項的添加條件不正確;D、∵,,又,,故D選項的添加條件正確.故選:ABD.【考點】本題考查了相似三角形的判定:兩組對應邊的比相等且夾角對應相等的兩個三角形相似;有兩組角對應相等的兩個三角形相似.也考查了圓周角定理.3、ABD【解析】【分析】利用兩組對應邊的比相等且夾角對應相等的兩個三角形相似可對A、C進行判斷;根據(jù)有兩組角對應相等的兩個三角形相似可對B、C進行判斷.【詳解】解:∵∠EAD=∠BAC,當,∠A=∠A,∴△ABC∽△ADE,故選項A符合題意;當∠B=∠ADE時,△ABC∽△ADE,故選項B符合題意;C選項中角A不是成比例的兩邊的夾角,故選項C不符合題意;當∠C=∠AED時,△ABC∽△ADE,故選項D符合題意;故選:ABD.【考點】本題考查了相似三角形的判定:①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.4、ABC【解析】【分析】A.當A′為CD中點時,設(shè)A'E=AE=x,則DE=8﹣x,根據(jù)勾股定理列出方程求解,可推出A正確;B.當△A'DE三邊之比為3:4:5時,假設(shè)A'D=3a,DE=4a,A'E=5a,根據(jù)AD=AE+DE=8,可求得a的值,進一步求得A'D=,即可判斷出B正確;C.過點E作EM⊥BC,垂足為M,連接A'A交EM,EF于點N,Q,證明△AA′D≌△EFM(ASA),即得C正確;D.過點A作AH⊥A'G,垂足為H,連接A'A,AG,先證△AA'D≌△AA'H,可得AD=AH,A'D=A'H,再證Rt△ABG≌Rt△AHG,可得HG=BG,由此證得△A'CG周長=16,即可得出D錯誤.【詳解】解:∵A′為CD中點,正方形ABCD的邊長為8,∴AD=8,A'D=CD=4,∠D=90o,∵正方形沿EF折疊,∴A'E=AE,∴設(shè)A'E=AE=x,則DE=8﹣x,∵在Rt△A'DE中,A'D2+DE2=A'E2,∴42+(8﹣x)2=x2,解得:x=5,∴AE=5,DE=3,∴tan∠DA'E=,故A正確;當△A'DE三邊之比為3:4:5時,假設(shè)A'D=3a,DE=4a,A'E=5a,則AE=A'E=5a,∵AD=AE+DE=8,∴5a+4a=8,解得:a=,∴A'D=3a=,A'C=CD﹣A'D=8﹣=,故B正確;如圖1,過點E作EM⊥BC,垂足為M,連接A'A交EM,EF于點N,Q,∴EM∥CD,EM=CD=AD,∴∠AEN=∠D=90°,由翻折可知:EF垂直平分AA′,∴∠AQE=90°,∴∠EAN+∠ANE=∠QEN+∠ANE=90°,∴∠EAN=∠QEN,在△AA'D和△EFM中,,∴△AA′D≌△EFM(ASA),∴AA'=EF,故C正確;如圖2,過點A作AH⊥A'G,垂足為H,連接A'A,AG,則∠AHA'=∠AHG=90°,∵折疊,∴∠EA'G=∠EAB=90°,A'E=AE,∵∠D=90o∴∠EAA'+∠DA'A=90o,∴∠AA'G=∠DA'A,∴△AA'D≌△AA'H(AAS),∴AD=AH,A'D=A'H,∵AD=AB,∴AH=AB,在Rt△ABG與Rt△AHG中,,∴Rt△ABG≌Rt△AHG(HL),∴HG=BG,∴△A'CG周長=A'C+A'G+CG=A'C+A'H+HG+CG=A'C+A'D+BG+CG=CD+BC=8+8=16,∴當A'在CD上移動時,△A'CG周長不變,故D錯誤.故選:ABC【考點】本題屬于幾何綜合題,考查了正方形的性質(zhì),折疊的性質(zhì),勾股定理,全等三角形的判定及性質(zhì),熟練掌握相關(guān)圖形的性質(zhì)是解決本題的關(guān)鍵.5、ABCD【解析】【分析】根據(jù)圖形,利用三角形中位線定理,可得DE=1,A成立;AB邊上的高,可利用勾股定理求出等于,B成立;DE是△CAB的中位線,可得DE∥AB,利用平行線分線段成比例定理的推論,可得△CDE∽△CAB,C成立;由△CDE∽△CAB,且相似比等于1:2,那么它們的面積比等于相似比的平方,就等于1:4,D也成立.【詳解】解:∵DE是它的中位線,∴DE=AB=1,故A正確,∴DE∥AB,∴△CDE∽△CAB,故C正確,∴S△CDE:S△CAB=DE2:AB2=1:4,故D正確,∵等邊三角形的高=,故B正確.故選ABCD.【考點】本題利用了:1、三角形中位線的性質(zhì);2、相似三角形的判定:一條直線與三角形一邊平行,則它所截得三角形與原三角形相似;3、相似三角形的面積等于對應邊的比的平方;4、等邊三角形的高=邊長×sin60°.6、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內(nèi)心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內(nèi)心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項A錯誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項D正確,故選:BCD【考點】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內(nèi)心性質(zhì),等腰直角三角形,等知識,證明△ABC是等腰直角三角形是解題的關(guān)鍵.7、ABC【解析】【分析】根據(jù)垂徑定理的推論,即如果一條直線滿足:①垂直于弦,②平分弦,③過圓心,④平分優(yōu)弧,⑤平分劣弧中的兩個條件,即可推論出其余三個,逐一進行判斷即可.【詳解】解:A、由于直徑也是弦,所以平分一條直徑的弦不一定垂直這條直徑,選項說法錯誤,符合題意;B、平分一條弧的直線不一定垂直于這條弧,應該是:過圓心,且平分一條弧的直線垂直于這條弧所對的弦,選項說法錯誤,符合題意;C、弦的垂線不一定經(jīng)過這條弦所在的圓心,應該是:弦的垂直平分線必經(jīng)過這條弦所在的圓心,選項說法錯誤,符合題意;D、在一個圓內(nèi),平分一條弧和它所對弦的直線必經(jīng)過這個圓的圓心,選項說法正確,不符合題意;故選ABC.【考點】本題考查了垂徑定理,解題的關(guān)鍵是掌握垂徑定理及其推論.三、填空題1、①②④【解析】【分析】由二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點為(0,3),即可判斷①;由拋物線的對稱軸為直線x=1,即可判斷②;拋物線與x軸的一個交點在-1到0之間,拋物線對稱軸為直線x=1,即可判斷④,由拋物線開口向下,得到a<0,再由當x=-1時,,即可判斷③.【詳解】解:∵二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點為(0,3),∴c=3,故①正確;∵拋物線的對稱軸為直線x=1,∴,即,故②正確;∵拋物線與x軸的一個交點在-1到0之間,拋物線對稱軸為直線x=1,∴拋物線與x軸的另一個交點在2到3之間,故④正確;∵拋物線開口向下,∴a<0,∵當x=-1時,,∴即,故③錯誤,故答案為:①②④.【考點】本題主要考查了二次函數(shù)圖像的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握二次函數(shù)圖像的性質(zhì).2、【解析】【分析】利用反比例函數(shù)比例系數(shù)k的幾何意義得到S△AOC=||=-,S△BOC=||=-,利用AB=3BC得到S△ABO=3S△OBC=6,所以-=2,解得=-4,再利用-=6+2得=-16,然后計算+的值.【詳解】解:∵AC⊥x軸于點C,與反比例函數(shù)y=(x<0)圖象交于點B,而<0,<0,∴S△AOC=||=-,S△BOC=||=-,∵AB=3BC,∴S△ABO=3S△OBC=6,即-=2,解得=-4,∵-=6+2,解得=-16,∴+=-16-4=-20.故答案為:-20.【考點】本題考查了反比例函數(shù)比例系數(shù)k的幾何意義:在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構(gòu)成的三角形的面積是|k|,且保持不變.3、(答案不唯一)【解析】【分析】設(shè)與交點為,根據(jù)題意關(guān)于y軸對稱和二次函數(shù)的對稱性,可找到的值(只需滿足互為相反數(shù)且滿足即可)即可寫出一個符合條件的方程【詳解】設(shè)與交點為,根據(jù)題意則的對稱軸為故設(shè)則方程為:故答案為:【考點】本題考查了二次函數(shù)的對稱性,二次函數(shù)與一元二次方程的關(guān)系,熟悉二次函數(shù)的性質(zhì)和找到兩根的對稱性類比二次函數(shù)的對稱性是解題的關(guān)鍵4、2【解析】【分析】首先求出的頂點坐標和與x軸兩個交點坐標,然后根據(jù)“特征三角形”是等腰直角三角形列方程求解即可.【詳解】解:∵∴,代入得:∴拋物線的頂點坐標為∵當時,即,解得:,∴拋物線與x軸兩個交點坐標為和∵的“特征三角形”是等腰直角三角形,∴,即解得:.故答案為:2.【考點】此題考查了二次函數(shù)與x軸的交點問題,等腰直角三角形的性質(zhì),解題的關(guān)鍵是求出的頂點坐標和與x軸兩個交點坐標.5、4【解析】【分析】由A、B坐標可得對稱軸,由頂點在x軸上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐標代入即可求得n的值.【詳解】解:∵點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)y=x2+bx+c圖象上,∴,∴b=﹣2(m+1),∵二次函數(shù)y=x2+bx+c的頂點在x軸上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐標代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案為:4.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)的頂點坐標,表示出b、c的值是解題的關(guān)鍵.6、112【解析】【分析】根據(jù)題意,可知Rt△AEN∽Rt△FAN,從而可以得到對應邊的比相等,從而可以求得正方形的邊長.【詳解】解:∵點M、點N分別是正方形ABCD的邊AD、AB的中點,∴,∴AM=AN,由題意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽Rt△FAN,∴,∵AM=AN,∴,解得:AM=140,∴AD=2AM=280(步),∴(米)故答案為:112.【考點】本題考查相似三角形的應用、數(shù)學常識、正方形的性質(zhì),解答本題的關(guān)鍵是明確題意.利用相似三角形的性質(zhì)和數(shù)形結(jié)合的思想解答.7、1080【解析】【分析】直接利用相似多邊形的性質(zhì)進而得出答案.【詳解】∵將此廣告牌的四邊都擴大為原來的3倍,∴面積擴大為原來的9倍,∴擴大后長方形廣告牌的成本為:120×9=1080(元).故答案為:1080.【考點】此題考查相似多邊形的性質(zhì),相似多邊形的面積的比等于相似比的平方.四、解答題1、當BD的長是或時,圖中的兩個直角三角形相似【解析】【分析】先利用勾股定理計算出BC=3,再根據(jù)相似三角形的判定方法進行討論:當時,Rt△DBA∽Rt△BCA,即,當時,Rt△DBA∽Rt△BAC,即,然后利用比例性質(zhì)求出對應的BD的長即可.【詳解】在Rt△ABC中,BC3.∵∠ABC=∠ADB=90°,∴分兩種情況討論:①當時,Rt△DBA∽Rt△BCA,即,解得:BD;②當時,Rt△DBA∽Rt△BAC,即,解得:BD.綜上所述:當BD的長是或時,圖中的兩個直角三角形相似.【考點】本題考查了相似三角形的判定:兩組對應邊的比相等且夾角對應相等的兩個三角形相似.2、32米【解析】【分析】設(shè)關(guān)于的對稱點為,根據(jù)光線的反射可知,延長、相交于點,連接并延長交于點,先根據(jù)鏡面反射的基本性質(zhì),得出,再運用相似三角形對應邊成比例即可解答.【詳解】設(shè)關(guān)于的對稱點為,根據(jù)光線的反射可知,延長、相交于點,連接并延長交于點,由題意可知且、∴∴∴即:∴∴答:樓的高度為米.【考點】本題考查了相似三角形的應用、鏡面反射的基本性質(zhì),準確作出輔助線是關(guān)鍵.3、(1);(2);(3)存在.【解析】【分析】(1)由,且AB=6即可求出AO的長,再由勾股定理即可求出BO的長,即可求出A和B點坐標.(2)P點從原點出發(fā),在到達終點前,直線l掃過的面積始終為平行四邊形BMNE,故求該平行四邊的底BE和高OP,相乘即得到面積S;由,且AB=6,可求出AC=10,過D點作DF⊥x軸,易證,求出CF=AO,進而求出OF的長;由,故,求出OE的長,進而求出OB+OE=BE.(3)分類討論,當B為直角頂角時,過Q1點作QH⊥y軸,此時△Q1HB≌△BOC,即可求出Q1的坐標;當Q2為直角頂角時,過Q2點作QM⊥y軸,QN⊥x軸,此時Q2MB≌Q2NC,即可求出Q2的坐標.【詳解】解:(1)由題意可得故答案為:(2)過點作軸,垂足為F,則

∴∵∴,故,求得.當時,直線掃過的圖形是平行四邊形,故答案為:.存在,.如下圖所示:情況一:當B為直角頂角時,此時BQ1=BC,過Q1點作Q1H1⊥y軸于H1,∴∠Q1H1B=∠BOC=90°,且BQ1=BC,∵∠Q1BC=90°∴∠H1BQ1+∠OBC=90°又∠BCO+∠OBC=90°∴∠H1BO1=∠BCO在△Q1H1B和△BOC中:,∴△△Q1H1B≌△BOC(AA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論