版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
中考數(shù)學總復習《圓》試題預測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、在平面直角坐標系xOy中,已知點A(4,3),以原點O為圓心,5為半徑作⊙O,則()A.點A在⊙O上B.點A在⊙O內(nèi)C.點A在⊙O外D.點A與⊙O的位置關系無法確定2、如圖,矩形中,,,,分別是,邊上的動點,,以為直徑的與交于點,.則的最大值為(
).A.48 B.45 C.42 D.403、如圖,是⊙的直徑,點C為圓上一點,的平分線交于點D,,則⊙的直徑為(
)A. B. C.1 D.24、已知點在半徑為8的外,則(
)A. B. C. D.5、如圖,是的弦,點在過點的切線上,,交于點.若,則的度數(shù)等于(
)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖所示的扇形中,,C為上一點,,連接,過C作的垂線交于點D,則圖中陰影部分的面積為_______.2、如圖所示是一個幾何體的三視圖,如果一只螞蟻從這個幾何體的點出發(fā),沿表面爬到的中點處,則最短路線長為__________.3、如圖,將三角形AOC繞點O順時針旋轉120°得三角形BOD,已知OA=4,OC=1,那么圖中陰影部分的面積為_____.(結果保留π)4、圓錐的底面半徑為3,側面積為,則這個圓錐的母線長為________.5、如圖,把一個圓錐沿母線OA剪開,展開后得到扇形AOC,已知圓錐的高h為12cm,OA=13cm,則扇形AOC中的長是_____cm(計算結果保留π).三、解答題(5小題,每小題10分,共計50分)1、如圖,為⊙的直徑,過圓上一點作⊙的切線交的延長線與點,過點作交于點,連接.(1)直線與⊙相切嗎?并說明理由;(2)若,,求的長.2、在平面直角坐標系中,⊙C與x軸交于點A,B,且點B的坐標為(8,0),與y軸相切于點D(0,4),過點A,B,D的拋物線的頂點為E.(1)求圓心C的坐標與拋物線的解析式;(2)判斷直線AE與⊙C的位置關系,并說明理由;(3)若點M,N是直線y軸上的兩個動點(點M在點N的上方),且MN=1,請直接寫出的四邊形EAMN周長的最小值.3、如圖,AB是⊙O的直徑,D,E為⊙O上位于AB異側的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F,連接AE,DE,DF.(1)證明:∠E=∠C;(2)若∠E=55°,求∠BDF的度數(shù).4、如圖,四邊形ABCD是平行四邊形,點A,B,D均在圓上.請僅用無刻度的直尺分別下列要求畫圖.(1)在圖①中,若AB是直徑,CD與圓相切,畫出圓心;(2)在圖②中,若CB,CD均與圓相切,畫出圓心.5、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當其中一個動點到達端點時,另一個動點也隨之停止運動,設運動時間為t(s).(1)當t為何值時,四邊形PQCD為平行四邊形?(2)當t為何值時,PQ與⊙O相切?-參考答案-一、單選題1、A【解析】【分析】先求出點A到圓心O的距離,再根據(jù)點與圓的位置依據(jù)判斷可得.【詳解】解:∵點A(4,3)到圓心O的距離,∴OA=r=5,∴點A在⊙O上,故選:A.【考點】本題考查了對點與圓的位置關系的判斷.關鍵要記住若半徑為,點到圓心的距離為,則有:當時,點在圓外;當時,點在圓上,當時,點在圓內(nèi),也考查了勾股定理的應用.2、A【解析】【分析】過A點作AH⊥BD于H,連接OM,如圖,先利用勾股定理計算出BD=75,則利用面積法可計算出AH=36,再證明點O在AH上時,OH最短,此時HM有最大值,最大值為24,然后根據(jù)垂徑定理可判斷MN的最大值.【詳解】解:過A點作AH⊥BD于H,連接OM,如圖,在Rt△ABD中,BD=,∵×AH×BD=×AD×AB,∴AH==36,∵⊙O的半徑為26,∴點O在AH上時,OH最短,∵HM=,∴此時HM有最大值,最大值為:24,∵OH⊥MN,∴MN=2MH,∴MN的最大值為2×24=48.故選:A.【考點】本題考查了垂徑定理:直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱司匦蔚男再|和勾股定理.3、B【解析】【分析】過D作DE⊥AB垂足為E,先利用圓周角的性質和角平分線的性質得到DE=DC=1,再說明Rt△DEB≌Rt△DCB得到BE=BC,然后再利用勾股定理求得AE,設BE=BC=x,AB=AE+BE=x+,最后根據(jù)勾股定理列式求出x,進而求得AB.【詳解】解:如圖:過D作DE⊥AB,垂足為E∵AB是直徑∴∠ACB=90°∵∠ABC的角平分線BD∴DE=DC=1在Rt△DEB和Rt△DCB中DE=DC、BD=BD∴Rt△DEB≌Rt△DCB(HL)∴BE=BC在Rt△ADE中,AD=AC-DC=3-1=2AE=設BE=BC=x,AB=AE+BE=x+在Rt△ABC中,AB2=AC2+BC2則(x+)2=32+x2,解得x=∴AB=+=2故填:2.【考點】本題主要考查了圓周角定理、角平分線的性質以及勾股定理等知識點,靈活應用相關知識成為解答本題的關鍵.4、A【解析】【分析】根據(jù)點P與⊙O的位置關系即可確定OP的范圍.【詳解】解:∵點P在圓O的外部,∴點P到圓心O的距離大于8,故選:A.【考點】本題主要考查點與圓的位置關系,關鍵是要牢記判斷點與圓的位置關系的方法.5、B【解析】【分析】根據(jù)題意可求出∠APO、∠A的度數(shù),進一步可得∠ABO度數(shù),從而推出答案.【詳解】∵,∴∠APO=70°,∵,∴∠AOP=90°,∴∠A=20°,又∵OA=OB,∴∠ABO=20°,又∵點C在過點B的切線上,∴∠OBC=90°,∴∠ABC=∠OBC?∠ABO=90°?20°=70°,故答案為:B.【考點】本題考查的是圓切線的運用,熟練掌握運算方法是關鍵.二、填空題1、【解析】【分析】先根據(jù)題目條件計算出OD,CD的長度,判斷為等邊三角形,之后表示出陰影面積的計算公式進行計算即可.【詳解】在中,∴∵∴∵∴為等邊三角形∴故答案為:【考點】本題考查了陰影面積的計算,熟知不規(guī)則陰影面積的計算方法是解題的關鍵.2、【解析】【分析】將圓錐的側面展開,設頂點為B',連接BB',AE.線段AC與BB'的交點為F,線段BF是最短路程.【詳解】如圖將圓錐側面展開,得到扇形ABB′,則線段BF為所求的最短路程.設∠BAB′=n°.∵=4,∴n=120即∠BAB′=120°.∵E為弧BB′中點,∴∠AFB=90°,∠BAF=60°,∴BF=AB?sin∠BAF=6×=,∴最短路線長為.故答案為:.【考點】本題考查了平面展開?最短路徑問題,解題時注意把立體圖形轉化為平面圖形的思維.3、5π【解析】【分析】根據(jù)旋轉的性質可以得到陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積,利用扇形的面積公式計算即可求解.【詳解】∵△AOC≌△BOD,∴陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積5π.故答案為5π.【考點】本題考查了旋轉的性質以及扇形的面積公式,正確理解:陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積是解題的關鍵.4、4【解析】【分析】根據(jù)圓錐的底面半徑可以求出底面周長即為展開后的弧長,側面積即為展開后扇形的面積,再根據(jù)扇形的面積公式求出扇形的半徑即為圓錐的母線.【詳解】∵底面半徑為3,∴底面周長=2×3π=6π.∴圓錐的母線=.故答案為:4.【考點】本題考查圓錐與扇形的結合,關鍵在于理解圓錐周長是扇形弧長,圓錐母線是扇形半徑.5、10π【解析】【分析】根據(jù)的長就是圓錐的底面周長即可求解.【詳解】解:∵圓錐的高h為12cm,OA=13cm,∴圓錐的底面半徑為=5cm,∴圓錐的底面周長為10πcm,∴扇形AOC中的長是10πcm,故答案為10π.【考點】本題考查了圓錐的計算,解題的關鍵是了解圓錐的底面周長等于展開扇形的弧長.三、解答題1、(1)相切,見解析(2)【解析】【分析】(1)先證得:,再證,得到,即可求出答案;(2)設半徑為;則:,即可求得半徑,再在直角三角形中,利用勾股定理,求解即可.(1)證明:連接.∵為切線,∴,又∵,∴,,且,∴,在與中;∵,∴,∴,∴直線與相切.(2)設半徑為;則:,得;在直角三角形中,,,解得【考點】本題主要考查與圓相關的綜合題型,涉及全等三角形的判定和性質等知識,熟練掌握平行線性質、勾股定理及全等三角形的判定和性質是解題的關鍵.2、(1)C(5,4),yx2x+4;(2)AE是⊙C的切線,理由見解析;(3).【解析】【分析】(1)如圖1,連接CD,CB,過點C作于M.設⊙C的半徑為r.在Rt△BCM中,利用勾股定理求出半徑,可得點C的坐標,根據(jù)函數(shù)的對稱性,得,用待定系數(shù)法即可求解.(2)結論:AE是OC的切線.連接AC,CE,由拋物線的解析式推出點E的坐標,求出AC,AE,CE,利用勾股定理的逆定理證明即可解決問題.(3)由四邊形EAMN周長,可得當有最小值時,四邊形周長有最小值,即當點M在線段上時,的最小值為,即可求解.(1)解:(1)如圖,連接CD,CB,過點C作CM⊥AB于M.設⊙C的半徑為r,∵與y軸相切于點D(0,4),∴CD⊥OD,∵∠CDO=∠CMO=∠DOM=90°,∴四邊形ODCM是矩形,∴CM=OD=4,CD=OM=r,∵B(8,0),∴OB=8,∴BM=8﹣r,在Rt△CMB中,∵BC2=CM2+BM2,∴r2=42+(8﹣r)2,解得r=5,∴圓心C(5,4),∴拋物線的對稱軸為x=5,又∵點B(8,0),∴點A(2,0),則拋物線的表達式為y=a(x﹣2)(x﹣8),將點D的坐標代入上式得:4=a×(0﹣2)×(0﹣8),解得a,故拋物線的表達式為y(x﹣2)(x﹣8)x2x+4.(2)解:結論:AE是⊙C的切線.理由如下:連接AC,CE.當x=5時,y,∴頂點E(5,),∵AE,CE=4,AC=5,∴EC2,AE2+AC2∴EC2=AC2+AE2,∴∠CAE=90°,∴CA⊥AE,∴AE是⊙C的切線.(3)解:如圖3,作點A關于y軸的對稱點A'(﹣2,0),過點E作EF∥MN,且EF=MN=1,連接A'M,A'F,MF,∵點A與點A'關于y軸對稱,∴AM=A'M,∵EF∥MN,EF=MN,∴四邊形MNEF是平行四邊形,∴MF=NE,∵四邊形EAMN周長=AE+AM+MN+NEAM+1+MFA'M+MF,∴當A'M+MF有最小值時,四邊形EAMN周長有最小值,∴當點M在線段A'F上時,A'M+MF的最小值為A'F,∵EF∥MN,EF=MN=1,∴點F(5,),∴A'F,∴四邊形EAMN周長的最小值.【考點】本題主要考查二次函數(shù)與圓的綜合運用,數(shù)形結合能提高解題效率.3、(1)詳見解析;(2)110°.【解析】【分析】(1)連接AD,利用直徑所對的圓周角為直角,可得AD⊥BC,再根據(jù)CD=BD,故AD垂直平分BC,根據(jù)垂直平分線上的點到線段兩個端點的距離相等,可得:AB=AC,再根據(jù)等邊對等角和同弧所對的圓周角相等即可得到∠E=∠C;(2)根據(jù)內(nèi)接四邊形的性質:四邊形的外角等于它的內(nèi)對角,可得∠CFD=∠E=55°,再利用外角的性質即可求出∠BDF.【詳解】(1)證明:連接AD,如圖所示:∵AB是⊙O的直徑,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,∵∠B=∠E,∴∠E=∠C;(2)解:∵四邊形AEDF是⊙O的內(nèi)接四邊形,∴∠AFD=180°﹣∠E,∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,由(1)得:∠E=∠C=55°,∴∠BDF=∠C+∠CFD=55°+55°=110°.【考點】此題考查的是(1)直徑所對的圓周角是直角、垂直平分線的性質和同弧所對的圓周角相等;(2)內(nèi)接四邊形的性質.4、(1)見解析;(2)見解析【解析】【分析】(1)延長CB交圓于一點,把這點與點D連接,與AB交點即為圓心;(2)連接AC、BD交于點G,AC交圓于點E,射線DE交BC于F,射線FG交DA于H,連接BH交AC于O即可.【詳解】(1)如圖1所示,延長CB交圓于點E,連接DE,與AB交點即為圓心;由已知可得∠A+∠DBA=90°,∠EBA=∠C=∠A,故∠EBA+∠DBA=90°,DE為直徑;(2)如圖2所示,連接AC、BD交于點G,AC交圓于點E,射線DE交BC于F,射線FG交DA于H,連接BH交AC于O.點即為所求.說明:由已知可得,△ADB為等邊三角形,由作圖可知,AE為直徑,DF⊥BC,可得,F(xiàn)是BC中點,進而得出H是AD中點,BH⊥AD,BH過圓心;【考點】本題考查了無刻度直尺作圖,解題關鍵是準確理解題意,根據(jù)圓的有關性質進行作圖.5、(1)當時,四邊形PQCD為平行四邊形;(2)當t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年福建莆田市國睿產(chǎn)業(yè)園區(qū)運營管理有限公司企業(yè)員工招聘8人筆試重點試題及答案解析
- 2025年三穗縣桐林鎮(zhèn)村“兩委”后備力量招募備考題庫及參考答案詳解一套
- 2025廣東東莞市南城第一初級中學招聘1人備考筆試題庫及答案解析
- 2025年信陽市明港消防救援大隊招聘政府專職消防救援人員6人備考筆試試題及答案解析
- 2025玉溪市易門縣華億投資有限責任公司(第二次)招聘工作人員(8人)備考核心題庫及答案解析
- 2025河南洛陽瀍河區(qū)北窯社區(qū)衛(wèi)生服務中心招聘專業(yè)技術人才3人參考筆試題庫附答案解析
- 2025中國能建葛洲壩電力公司國內(nèi)市場機構正副職崗位招聘筆試重點題庫及答案解析
- 2025四川成都產(chǎn)業(yè)投資集團有限公司所屬成都先進資本管理有限公司招聘投資管理崗高級項目經(jīng)理5人備考筆試題庫及答案解析
- 奇妙的科技發(fā)明故事作文7篇范文
- 2025年陜西華森盛邦科技有限公司招聘考試核心試題及答案解析
- 畢業(yè)設計(論文)-轎車盤式制動器設計
- 中醫(yī)護理技術推拿
- 2025年人教版(2024)小學信息科技三年級(全一冊)教學設計及反思(附目錄P206)
- 6061鋁合金與CFRP回填式攪拌摩擦點焊:工藝解析與接頭性能探究
- 校油泵維修協(xié)議書
- 中小學食堂管理規(guī)范
- 零基礎電腦知識課件下載
- 煤礦重大災害治理頂層設計方案
- 車輛加水協(xié)議書范本
- 2021年重慶市高等職業(yè)教育分類考試文化素質真題(中職類)
- 平潭島旅游景點
評論
0/150
提交評論