重難點解析青島版8年級數(shù)學(xué)下冊期末試題及完整答案詳解(有一套)_第1頁
重難點解析青島版8年級數(shù)學(xué)下冊期末試題及完整答案詳解(有一套)_第2頁
重難點解析青島版8年級數(shù)學(xué)下冊期末試題及完整答案詳解(有一套)_第3頁
重難點解析青島版8年級數(shù)學(xué)下冊期末試題及完整答案詳解(有一套)_第4頁
重難點解析青島版8年級數(shù)學(xué)下冊期末試題及完整答案詳解(有一套)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

青島版8年級數(shù)學(xué)下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、2022年新年賀詞中提到“人不負青山,青山定不負人”,下列四個有關(guān)環(huán)保的圖形中,是軸對稱圖形,但不是中心對稱圖形的是(

)A. B. C. D.2、已知是二元一次方程組mx?ny=8nx+my=1的解,則的立方根為(

)A. B. C. D.3、下列圖案中,是軸對稱圖形但不是中心對稱圖形的是(

)A. B. C. D.4、小明從家出發(fā)向正北方向走了150m,接著向正東方向走到離家直線距離為250m遠的地方,那么小明向正東方向走的路程是()A.250m B.200m C.150m D.100m5、一輛轎車和一輛貨車分別從甲、乙兩地同時出發(fā),勻速相向而行,相遇后繼續(xù)前行,已知兩車相遇時轎車比貨車多行駛了90千米,設(shè)行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至轎車到達乙地這一過程中y與x之間的函數(shù)關(guān)系.則點C的縱坐標是()A.260 B.280 C.300 D.3206、在下列實數(shù)中,最小的數(shù)是()A.﹣ B.﹣1 C.0 D.37、下列各數(shù)為無理數(shù)的是(

)A. B. C. D.08、在3.14,,,π,,0,0.1001000100001…中,無理數(shù)有(

)A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、若函數(shù)y=(k﹣2)x|k|﹣1+1是關(guān)于x的一次函數(shù),則k=_____.2、在Rt△ABC中,D是斜邊AB的中點,AD=10,則CD的長是______.3、請寫出一個y隨x的增大而減小的函數(shù)解析式_____.4、如圖,點的坐標為,點的坐標為,將繞點第一次順時針旋轉(zhuǎn)得到△,將△繞點第二次順時針旋轉(zhuǎn)得到△,將△繞點第三次順時針旋轉(zhuǎn)得到△,,如此進行下去,則點的坐標為__.5、如圖,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,點D是AB中點,在△ABC外取一點E,使DE=AD,連接DE,AE,BE,CE.若CE=-,∠ABE=30°,則AE的長為

_____.6、如圖,在Rt△ABC中,∠C=90°,AC=6,∠B=30°,點F在邊AC上,并且CF=2,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是_____.7、=_____.三、解答題(7小題,每小題10分,共計70分)1、計算:×+×+2、已知:如圖,線段a和∠α.求作:矩形ABCD,使AB=a,∠CAB=∠α.3、如圖1,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線,DE⊥AB于E.(1)發(fā)現(xiàn):如圖1,連接CE,則△BCE的形狀是_______________,∠CDB=____________°;(2)探索:如圖2,點P為線段AC上一個動點,當(dāng)點P在CD之間運動時,連接BP,作∠BPQ=60°,PQ交射線DE于Q,連接BQ,即△BPQ是等邊三角形;思路:在線段BD上截取點H,使DH=DP,得等邊△DPH,由∠DPQ=∠HPB,PD=PH,∠QDP=∠BHP,易證△PDQ≌△PHB(ASA),得PQ=PB,即△BPQ是等邊三角形.試判斷線段DQ、DP、AD之間的關(guān)系,并說明理由;(3)類比:如圖3,當(dāng)點P在AD之間運動時連接BP,作∠BPQ=60°,PQ交射線DE于Q,連接BQ.①試判斷△BPQ的形狀,并說明理由;②若AD=2,設(shè)AP=x,DQ=y,請直接寫出y與x之間的函數(shù)關(guān)系式.4、解不等式組:.5、如圖所示,一橋洞的上邊是半圓,下邊是長方形.已知半圓的直徑為2m,長方形的另一邊是1m,有一輛廂式小貨車,高1.5米,寬1.6米,這輛小貨車能否通過此橋洞?通過計算說明理由.6、在平面直角坐標系中,將兩塊分別含45°和30°的直角三角板按如圖放置(∠C=30°,AC=2AB),BC=.(1)點A坐標為____________,點B坐標為______________,點C坐標為________________;(2)平面內(nèi)存在點D(與點A不重合),使得△DBC與△ABC全等,請你直接寫出點D的坐標.7、如圖,在△ABC中,∠ACB=90°.(1)在斜邊AB上找一點P,使點P到AC的距離等于BP的長.請用無刻度直尺和圓規(guī)作出點P(不寫畫法,保留作圖痕跡);(2)若BC=4.5,AB=7.5,則AC的長為_______,(1)中BP的長為_______.-參考答案-一、單選題1、D【解析】【分析】軸對稱圖形:如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.中心對稱圖形:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關(guān)于這個點成中心對稱.根據(jù)軸對稱圖形、和中心對稱圖形的概念,即可完成解題.【詳解】解:根據(jù)軸對稱和中心對稱的概念,選項A、B、C、D中,是軸對稱圖形的是B、D,是中心對稱圖形的是B.故選:B.【點睛】本題主要軸對稱圖形、中心對稱圖形的概念,熟練掌握知識點是解答本題的關(guān)鍵.2、D【解析】【分析】將代入,得到關(guān)于,的方程組,再用代入消元法求解方程組,得到,的值,即可求得的值,再根據(jù)立方根的定義即可求解.【詳解】解:是二元一次方程組的解由得,將代入,得,解得,將代入,得,,的立方根為,的立方根為,故選:D.【點睛】本題考查了二元一次方程組的解,熟練掌握二元一次方程組的解法、立方根的求法是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念逐一判斷即可得答案.【詳解】A.既不是軸對稱圖形也不是中心對稱圖形,不符合題意,B.是軸對稱圖形但不是中心對稱圖形,符合題意,C.不是軸對稱圖形但是中心對稱圖形,不符合題意,D.既不是軸對稱圖形也不是中心對稱圖形,不符合題意,故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.4、B【解析】【分析】根據(jù)題意畫出圖形,進而利用勾股定理得出答案.【詳解】解:如圖所示:由題意可得:,由勾股定理得,故選B【點睛】此題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是理解題意,正確畫出圖形.5、C【解析】【分析】根據(jù)題意和函數(shù)圖象中的數(shù)據(jù),可以求出點C的縱坐標.【詳解】解:由題意可得,甲乙兩地的距離為150×3=450(千米),∵兩車相遇時轎車比貨車多行駛了90千米,兩車相遇時正好是3小時,∴轎車每小時比貨車多行駛30千米,∴轎車的速度為:[450÷3﹣30]÷2+30=90(千米/小時),貨車的速度為:[450÷3﹣30]÷5=60(千米/小時),轎車到達乙地用的時間為:450÷90=5(小時),此時兩車間的距離為:60×5=300(千米),∴點C的縱坐標是300.故選:C.【點睛】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.6、A【解析】【分析】根據(jù)無理數(shù)的估算以及兩個負數(shù)比較大小,即可求得最小的數(shù)【詳解】解:最小的數(shù)是故選A【點睛】本題考查了實數(shù)的大小比較,掌握無理數(shù)的估算是解題的關(guān)鍵.7、C【解析】【分析】無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分數(shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項.【詳解】A.﹣4是整數(shù),屬于有理數(shù),故本選項不合題意;B.是分數(shù),屬于有理數(shù),故本選項不符合題意;C.是無理數(shù),故選項合題意;D.0是整數(shù),屬于有理數(shù),故選項不符合題意;故答案選:C【點睛】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學(xué)習(xí)的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…(每兩個1之間的0依次增加1個),等有這樣規(guī)律的數(shù).8、C【解析】【分析】根據(jù)無理數(shù)是無限不循環(huán)小數(shù)求解【詳解】解:,故無理數(shù)有:π,,0.1001000100001…,共個,故選:C.【點睛】本題考查了對實數(shù)分類的理解,掌握無理數(shù)的定義,準確求得一個數(shù)的立方根是解決本題的關(guān)鍵.二、填空題1、-2【解析】【分析】由一次函數(shù)定義得到,即可求出答案.【詳解】解:∵函數(shù)y=(k﹣2)x|k|﹣1+1是關(guān)于x的一次函數(shù),∴,∴k=-2,故答案為:-2.【點睛】此題考查了一次函數(shù)的定義:形如:y=kx+b()的函數(shù)是一次函數(shù),熟記定義是解題的關(guān)鍵.2、10【解析】【分析】根據(jù)斜邊中線等于斜邊一半,直接求解即可.【詳解】解:∵∠ACB=90°,D為斜邊AB的中點,∴AD=BD=10,∴CD=AD=10.故答案為:10.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.3、答案不唯一,y=-x.【解析】【分析】根據(jù)函數(shù)的增減性,去選擇函數(shù).【詳解】根據(jù)題意,得y=-x,故答案為:y=-x.【點睛】本題考查了函數(shù)的增減性,熟練掌握函數(shù)的增減性是解題的關(guān)鍵.4、【解析】【分析】根據(jù)題意得出點坐標變化規(guī)律,進而得出點的坐標位置,進而得出答案.【詳解】解:點的坐標為,點的坐標為,是直角三角形,,,將繞點第一次順時針旋轉(zhuǎn)得到△,此時為,將△繞點第二次順時針旋轉(zhuǎn)得到△,得到為,再將△繞點第三次順時針旋轉(zhuǎn)得到△,得到,,依此規(guī)律,每4次循環(huán)一周,,,,,,點,即.故答案為.【點睛】此題主要考查了坐標與圖形旋轉(zhuǎn),得出點坐標變化規(guī)律是解題關(guān)鍵.5、2【解析】【分析】過點C作CF⊥CE交BE于F,設(shè)AC交BE于J,根據(jù)點D是AB中點,DE=AD,可證∠AEB=90°,從而可證△CAE≌△CBF(ASA),即得CE=CF,AE=BF,由∠ECF=90°,得EF=CE=2-2,設(shè)AE=BF=x,則BE=x+2-2,在Rt△AEB中,BE=AE,有x+2-2=x,即可解得答案.【詳解】解:過點C作CF⊥CE交BE于F,設(shè)AC交BE于J,如圖:∵點D是AB中點,∴AD=DB,∵DE=AD,∴DE=DA=DB,∴∠DBE=∠DEB,∠DEA=∠DAE,∵∠ABE+∠AEB+∠BAE=180°,∴2∠DEA+2∠DEB=180°,∴∠DEA+∠DEB=90°,∴∠AEB=90°,∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵∠AEJ=∠BCJ=90°,∠AJE=∠BJC,∴∠CAE=∠CBF,∵CB=CA,∴△CAE≌△CBF(ASA),∴CE=CF,AE=BF,∵∠ECF=90°,∴EF=CE=2-2,設(shè)AE=BF=x,則BE=x+2-2,在Rt△AEB中,∵∠ABE=30°,∠AEB=90°,∴AE=AB,由勾股定理得BE=AE,∴x+2-2=x,解得:x=2.故答案為:2.【點睛】本題考查了等腰直角三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),解直角三角形等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.6、【解析】【分析】延長FP交AB于M,當(dāng)FP⊥AB時,點P到AB的距離最?。\用勾股定理求解.【詳解】解:如圖,延長FP交AB于M,當(dāng)FP⊥AB時,點P到AB的距離最?。逜C=6,CF=2,∴AF=AC-CF=4,∵∠B=30°,∠ACB=90°∴∠A=60°∵∠AMF=90°,∴∠AFM=30°,∴AM=AF=2,∴FM==2,∵FP=FC=2,∴PM=MF-PF=2-2,∴點P到邊AB距離的最小值是2-2.故答案為:2-2.【點睛】本題考查了翻折變換,涉及到的知識點有直角三角形兩銳角互余、勾股定理等,解題的關(guān)鍵是確定出點P的位置.7、【解析】【分析】根據(jù)二次根式乘除運算法則計算即可.【詳解】原式=故答案為:.【點睛】本題考查二次根式的乘除混合運算,可以先算乘除再化簡,也可以先化簡以后再計算.三、解答題1、【解析】【分析】根據(jù)算術(shù)平方根與立方根的性質(zhì)和冪的乘方進行計算即可.【詳解】解:原式=25×-×4+3=-3+3=.【點睛】本題主要考查了算術(shù)平方根的性質(zhì)、立方根的性質(zhì)和冪的乘方運算.2、作圖見解析【解析】【分析】先作∠MAN=∠α,再在AM上截取AB=a,接著過B點作AM的垂線交AN于C,然后分別以A、C為圓心,BC、BA為半徑畫弧,兩弧相交于D,則四邊形ABCD滿足條件.【詳解】解:如圖,矩形ABCD為所求.【點睛】本題考查了作圖-復(fù)雜作圖:解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了矩形的判定.3、(1)等邊三角形,60;(2)AD=DQ+DP,見解析;(3)①△BPQ是等邊三角形,見解析;②y=-x+4【解析】【分析】(1)根據(jù)直角三角形的兩銳角互余求得∠ABC=60°,再根據(jù)角平分線的定義求得∠ABD=∠CBD=∠A=30°,則AD=BD,根據(jù)等腰三角形的性質(zhì)證得AE=BE,再由直角三角形斜邊上的中線性質(zhì)得出CE=BE,根據(jù)等邊三角形的判定即可得出結(jié)論;(2)根據(jù)思路和全等三角形的性質(zhì)得出BH=DQ,結(jié)合AD=BD,BD=DH+BH即可解答;(3)延長BD至F,使DF=PD,連接PF,可證得△PDF是等邊三角形,則有PF=PD,∠F=∠PDF=∠DPF=60°,進而可得∠F=∠PDQ=60°,證明∠BPF=∠QPD,利用ASA證明△PBF≌△PQD,得出PB=PQ,BF=DQ,結(jié)合∠BPQ=60°和AD=BD即可得出①②的結(jié)論.(1)解:如圖1,∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分線,∴∠ABD=∠CBD=∠ABC=30°,∴∠ABD=∠A,∠CDB=90°-∠CBD=60°,∴AD=BD,又DE⊥AB,∴AE=BE=AB,又∠ACB=90°,∴CE=AB=BE,又∠ABC=60°,∴△BCE是等邊三角形,故答案為:等邊三角形,60;(2)解:AD=DQ+DP,理由為:在線段BD上截取點H,使DH=DP,如圖2,∵∠CDB=60°,∴△DPH為等邊三角形,∴DP=PH,∠DPH=∠DHP=60°,又∠BPQ=60°,∴∠DPQ+∠QPH=∠HPB+∠QPH=60°,∠BHP=120°,∴∠DPQ=∠HPB,∵∠A=30°,DE⊥AB,∴∠QDP=∠A+∠AED=30°+90°=120°,∴∠QDP=∠BHP,在△PDQ≌△PHB中,∴△PDQ≌△PHB(ASA),∴DQ=BH,PQ=PB,∵AD=BD,∠BPQ=60°,∴△BPQ為等邊三角形,AD=BD=BH+DH=DQ+DP,即AD=DQ+DP;(3)解:①△BPQ為等邊三角形,理由為:延長BD至F,使DF=DP,連接PF,設(shè)DQ和BP相交于O,如圖3,∵∠PDF=∠CDB=60°,∴△PDF為等邊三角形,∴PF=DP,∠F=∠PDF=∠DPF=60°,∵∠A=30°,DE⊥AB,

∴∠PDQ=90°-∠A=60°,∴∠F=∠PDQ=60°,∵∠DPF+∠DPB=∠BPQ+∠DPB,又∠BPQ=60°,∴∠BPF=∠QPD,在△PBF和△PQD中,,∴△PBF≌△PQD(ASA),∴PB=PQ,BF=DQ,又∠BPQ=60°,∴△BPQ為等邊三角形;②∵DF=DP,BF=DQ,AD=BD,∴DQ=BF=BD+DF=AD+DP,∵AD=2,AP=x,DQ=y,∴y=2+2-x,即y=-x+4.【點睛】本題考查含30°角的直角三角形的性質(zhì)、直角三角形斜邊上的中線性質(zhì)、角平分線的定義、等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、三角形的外角性質(zhì)等知識,知識點較多,綜合性強,熟練掌握相關(guān)知識的聯(lián)系和運用,利用類比的方法解決問題是解答的關(guān)鍵.4、【解析】【分析】分別求兩個不等式的解集,然后求出公共的解集即可;【詳解】解:解不等式①得:解不等式②得:∴不等式組的解為.【點睛】本題考查了解一元一次不等式組.解題的關(guān)鍵在于正確的計算求解.5、能,理由見解析【解析】【分析】設(shè)半圓的圓心為O,于是得到OA=×1.6=0.8(米).過點A作直徑的垂線,交半圓于點B,交長方形另一邊于點C,根據(jù)勾股定理即可得到答案.【詳解】解:設(shè)半圓的圓心為O,(米).過點A作直徑的垂線,交半圓于點B,交長方形另一邊于點C.在中,由勾股定理可得:,即.所以米.所以(米).由于1.6米>1.5米,所以小貨車能通過此橋洞.【點睛】本題考查了勾股定理的應(yīng)用:建立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論