2025年河北省承德市隆化縣存瑞中學(xué)數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測試試題_第1頁
2025年河北省承德市隆化縣存瑞中學(xué)數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測試試題_第2頁
2025年河北省承德市隆化縣存瑞中學(xué)數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測試試題_第3頁
2025年河北省承德市隆化縣存瑞中學(xué)數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測試試題_第4頁
2025年河北省承德市隆化縣存瑞中學(xué)數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測試試題_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025年河北省承德市隆化縣存瑞中學(xué)數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或52.如圖所示,矩形的對角線相交于點(diǎn),為的中點(diǎn),若,則等于().A. B. C. D.3.已知函數(shù),以下結(jié)論正確的個(gè)數(shù)為()①當(dāng)時(shí),函數(shù)的圖象的對稱中心為;②當(dāng)時(shí),函數(shù)在上為單調(diào)遞減函數(shù);③若函數(shù)在上不單調(diào),則;④當(dāng)時(shí),在上的最大值為1.A.1 B.2 C.3 D.44.函數(shù)y=sin2x的圖象可能是A. B.C. D.5.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.6.已知實(shí)數(shù)、滿足約束條件,則的最大值為()A. B. C. D.7.已知函數(shù)的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點(diǎn)旋轉(zhuǎn);②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④8.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i9.已知雙曲線的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,則雙曲線的離心率為()A. B. C.3 D.410.已知函數(shù),集合,,則()A. B.C. D.11.已知定義在上的偶函數(shù),當(dāng)時(shí),,設(shè),則()A. B. C. D.12.如圖,圓的半徑為,,是圓上的定點(diǎn),,是圓上的動點(diǎn),點(diǎn)關(guān)于直線的對稱點(diǎn)為,角的始邊為射線,終邊為射線,將表示為的函數(shù),則在上的圖像大致為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙、丙、丁四名同學(xué)報(bào)名參加淮南文明城市創(chuàng)建志愿服務(wù)活動,服務(wù)活動共有“走進(jìn)社區(qū)”、“環(huán)境監(jiān)測”、“愛心義演”、“交通宣傳”等四個(gè)項(xiàng)目,每人限報(bào)其中一項(xiàng),記事件為“4名同學(xué)所報(bào)項(xiàng)目各不相同”,事件為“只有甲同學(xué)一人報(bào)走進(jìn)社區(qū)項(xiàng)目”,則的值為______.14.如圖,半球內(nèi)有一內(nèi)接正四棱錐,該四棱錐的體積為,則該半球的體積為__________.15.已知兩個(gè)單位向量滿足,則向量與的夾角為_____________.16.的角所對的邊分別為,且,,若,則的值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)我國在2018年社保又出新的好消息,之前流動就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費(fèi)時(shí)費(fèi)力.社保改革后將簡化手續(xù),深得流動就業(yè)人員的贊譽(yù).某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時(shí)間(天)與人數(shù)的頻數(shù)分布表:時(shí)間人數(shù)156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時(shí)間超過4天的人員里非流動人員有60人,請完成辦理社保手續(xù)所需時(shí)間與是否流動人員的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“辦理社保手續(xù)所需時(shí)間與是否流動人員”有關(guān).列聯(lián)表如下流動人員非流動人員總計(jì)辦理社保手續(xù)所需時(shí)間不超過4天辦理社保手續(xù)所需時(shí)間超過4天60總計(jì)21090300(2)為了改進(jìn)工作作風(fēng),提高效率,從抽取的300人中辦理時(shí)間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時(shí)間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87918.(12分)新型冠狀病毒肺炎疫情發(fā)生以來,電子購物平臺成為人們的熱門選擇.為提高市場銷售業(yè)績,某公司設(shè)計(jì)了一套產(chǎn)品促銷方案,并在某地區(qū)部分營銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn).運(yùn)作一年后,對“采用促銷”和“沒有采用促銷”的營銷網(wǎng)點(diǎn)各選取了50個(gè),對比上一年度的銷售情況,分別統(tǒng)計(jì)了它們的年銷售總額,并按年銷售總額增長的百分點(diǎn)分成5組:,分別統(tǒng)計(jì)后制成如圖所示的頻率分布直方圖,并規(guī)定年銷售總額增長10個(gè)百分點(diǎn)及以上的營銷網(wǎng)點(diǎn)為“精英店”.(1)請你根據(jù)題中信息填充下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“精英店與采用促銷活動有關(guān)”;采用促銷沒有采用促銷合計(jì)精英店非精英店合計(jì)5050100(2)某“精英店”為了創(chuàng)造更大的利潤,通過分析上一年度的售價(jià)(單位:元)和日銷量(單位:件)的一組數(shù)據(jù)后決定選擇作為回歸模型進(jìn)行擬合.具體數(shù)據(jù)如下表,表中的:①根據(jù)上表數(shù)據(jù)計(jì)算的值;②已知該公司成本為10元/件,促銷費(fèi)用平均5元/件,根據(jù)所求出的回歸模型,分析售價(jià)定為多少時(shí)日利潤可以達(dá)到最大.附①:附②:對應(yīng)一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為.19.(12分)已知函數(shù).(1)討論的零點(diǎn)個(gè)數(shù);(2)證明:當(dāng)時(shí),.20.(12分)已知函數(shù)f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實(shí)數(shù)a的取值范圍;(3)證明:對一切,都有成立.21.(12分)已知函數(shù)(Ⅰ)若,求曲線在點(diǎn)處的切線方程;(Ⅱ)若在上恒成立,求實(shí)數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項(xiàng)和,,求證:數(shù)列的前項(xiàng)和.22.(10分)如圖所示,三棱柱中,平面,點(diǎn),分別在線段,上,且,,是線段的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.2.A【解析】

由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.本題主要考查了平面向量基本定理的應(yīng)用,其中解答熟記平面向量的基本定理,化簡得到是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,數(shù)基礎(chǔ)題.3.C【解析】

逐一分析選項(xiàng),①根據(jù)函數(shù)的對稱中心判斷;②利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;③先求函數(shù)的導(dǎo)數(shù),若滿足條件,則極值點(diǎn)必在區(qū)間;④利用導(dǎo)數(shù)求函數(shù)在給定區(qū)間的最值.【詳解】①為奇函數(shù),其圖象的對稱中心為原點(diǎn),根據(jù)平移知識,函數(shù)的圖象的對稱中心為,正確.②由題意知.因?yàn)楫?dāng)時(shí),,又,所以在上恒成立,所以函數(shù)在上為單調(diào)遞減函數(shù),正確.③由題意知,當(dāng)時(shí),,此時(shí)在上為增函數(shù),不合題意,故.令,解得.因?yàn)樵谏喜粏握{(diào),所以在上有解,需,解得,正確.④令,得.根據(jù)函數(shù)的單調(diào)性,在上的最大值只可能為或.因?yàn)椋?,所以最大值?4,結(jié)論錯誤.故選:C本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值,意在考查基本的判斷方法,屬于基礎(chǔ)題型.4.D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號,即可判斷選擇.詳解:令,因?yàn)椋詾槠婧瘮?shù),排除選項(xiàng)A,B;因?yàn)闀r(shí),,所以排除選項(xiàng)C,選D.點(diǎn)睛:有關(guān)函數(shù)圖象的識別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)由函數(shù)的奇偶性,判斷圖象的對稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).5.C【解析】

根據(jù)復(fù)數(shù)代數(shù)形式的運(yùn)算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.本題主要考查復(fù)數(shù)代數(shù)形式的運(yùn)算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.6.C【解析】

作出不等式組表示的平面區(qū)域,作出目標(biāo)函數(shù)對應(yīng)的直線,結(jié)合圖象知當(dāng)直線過點(diǎn)時(shí),取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,如下圖表示:當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),取得最大值,最大值為.故選:C.本題主要考查線性規(guī)劃等基礎(chǔ)知識;考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識,屬于中檔題.7.D【解析】

計(jì)算得到,,故函數(shù)是周期函數(shù),軸對稱圖形,故②④正確,根據(jù)圖像知①③錯誤,得到答案.【詳解】,,,當(dāng)沿軸正方向平移個(gè)單位時(shí),重合,故②正確;,,故,函數(shù)關(guān)于對稱,故④正確;根據(jù)圖像知:①③不正確;故選:.本題考查了根據(jù)函數(shù)圖像判斷函數(shù)性質(zhì),意在考查學(xué)生對于三角函數(shù)知識和圖像的綜合應(yīng)用.8.B【解析】

利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.9.A【解析】

根據(jù)題意,由拋物線的方程可得其焦點(diǎn)坐標(biāo),由此可得雙曲線的焦點(diǎn)坐標(biāo),由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計(jì)算可得答案.【詳解】根據(jù)題意,拋物線的焦點(diǎn)為,則雙曲線的焦點(diǎn)也為,即,則有,解可得,雙曲線的離心率.故選:A.本題主要考查雙曲線、拋物線的標(biāo)準(zhǔn)方程,關(guān)鍵是求出拋物線焦點(diǎn)的坐標(biāo),意在考查學(xué)生對這些知識的理解掌握水平.10.C【解析】

分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.本題主要考查了集合的基本運(yùn)算,難度容易.11.B【解析】

根據(jù)偶函數(shù)性質(zhì),可判斷關(guān)系;由時(shí),,求得導(dǎo)函數(shù),并構(gòu)造函數(shù),由進(jìn)而判斷函數(shù)在時(shí)的單調(diào)性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當(dāng)時(shí),,則,令則,當(dāng)時(shí),,則在時(shí)單調(diào)遞增,因?yàn)?,所以,即,則在時(shí)單調(diào)遞增,而,所以,綜上可知,即,故選:B.本題考查了偶函數(shù)的性質(zhì)應(yīng)用,由導(dǎo)函數(shù)性質(zhì)判斷函數(shù)單調(diào)性的應(yīng)用,根據(jù)單調(diào)性比較大小,屬于中檔題.12.B【解析】

根據(jù)圖象分析變化過程中在關(guān)鍵位置及部分區(qū)域,即可排除錯誤選項(xiàng),得到函數(shù)圖象,即可求解.【詳解】由題意,當(dāng)時(shí),P與A重合,則與B重合,所以,故排除C,D選項(xiàng);當(dāng)時(shí),,由圖象可知選B.故選:B本題主要考查三角函數(shù)的圖像與性質(zhì),正確表示函數(shù)的表達(dá)式是解題的關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)條件概率的求法,分別求得,再代入條件概率公式求解.【詳解】根據(jù)題意得所以故答案為:本題主要考查條件概率的求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.14.【解析】

由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關(guān)系,進(jìn)而可寫出半球的半徑與四棱錐體積的關(guān)系,進(jìn)而求得結(jié)果.【詳解】設(shè)所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點(diǎn)睛】涉及球與棱柱、棱錐的切、接問題時(shí),一般過球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.15.【解析】

由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:本題主要考查平面向量的數(shù)量積的計(jì)算和夾角的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平.16.【解析】

先利用余弦定理求出,再用正弦定理求出并把轉(zhuǎn)化為與邊有關(guān)的等式,結(jié)合可求的值.【詳解】因?yàn)?,故,因?yàn)?,所?由正弦定理可得三角形外接圓的半徑滿足,所以即.因?yàn)?,解得或(舍?故答案為:.本題考查正弦定理、余弦定理在解三角形中的應(yīng)用,注意結(jié)合求解目標(biāo)對所得的方程組變形整合后整體求解,本題屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)列聯(lián)表見解析,有;(2)分布列見解析,.【解析】

(1)根據(jù)題意,結(jié)合已知數(shù)據(jù)即可填寫列聯(lián)表,計(jì)算出的觀測值,即可進(jìn)行判斷;(2)先計(jì)算出時(shí)間在和選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計(jì)算公式求得分布列,結(jié)合分布列即可求得數(shù)學(xué)期望.【詳解】(1)因?yàn)闃颖緮?shù)據(jù)中有流動人員210人,非流動人員90人,所以辦理社保手續(xù)所需時(shí)間與是否流動人員列聯(lián)表如下:辦理社保手續(xù)所需時(shí)間與是否流動人員列聯(lián)表流動人員非流動人員總計(jì)辦理社保手續(xù)所需時(shí)間不超過4天453075辦理社保手續(xù)所需時(shí)間超過4天16560225總計(jì)21090300結(jié)合列聯(lián)表可算得.有95%的把握認(rèn)為“辦理社保手續(xù)所需時(shí)間與是否流動人員”有關(guān).(2)根據(jù)分層抽樣可知時(shí)間在可選9人,時(shí)間在可以選3名,故,則,,,,可知分布列為0123可知.本題考查獨(dú)立性檢驗(yàn)中的計(jì)算,以及離散型隨機(jī)變量的分布列以及數(shù)學(xué)期望,涉及分層抽樣,屬綜合性中檔題.18.(1)列聯(lián)表見解析,有把握;(2)①;②元時(shí)【解析】

(1)直接由題意列出列聯(lián)表,通過計(jì)算,可判斷精英店與采用促銷活動是否有關(guān).(2)①代入表中數(shù)據(jù),結(jié)合公式求出;②由①中所得的線性回歸方程,若售價(jià)為,單價(jià)利潤為,日銷售量為,進(jìn)而可求出日利潤,結(jié)合導(dǎo)數(shù)可求最值.【詳解】解:(1)由題意知,采用促銷中精英店的數(shù)量為,采用促銷中非精英店的數(shù)量為;沒有采用促銷中精英店的數(shù)量為,沒有采用促銷中非精英店的數(shù)量為,列聯(lián)表為采用促銷沒有采用促銷合計(jì)精英店352055非精英店153045合計(jì)5050100因?yàn)橛械陌盐照J(rèn)為“精英店與采用促銷活動有關(guān)”.(2)①由公式可得:所以回歸方程為②若售價(jià)為,單件利潤為,日銷售為,故日利潤,解得.當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.故當(dāng)售價(jià)元時(shí),日利潤達(dá)到最大為元.本題考查了獨(dú)立性檢驗(yàn),考查了線性回歸方程的求法,考查了函數(shù)最值的求解.在求函數(shù)的最值時(shí),常用的方法有:函數(shù)圖像法、結(jié)合函數(shù)單調(diào)性分析最值、基本不等式法、導(dǎo)數(shù)法.其中最常用的還是導(dǎo)數(shù)法.19.(1)見解析(2)見解析【解析】

(1)求出,分別以當(dāng),,時(shí),結(jié)合函數(shù)的單調(diào)性和最值判斷零點(diǎn)的個(gè)數(shù).(2)令,結(jié)合導(dǎo)數(shù)求出;同理可求出滿足,從而可得,進(jìn)而證明.【詳解】解析:(1),,當(dāng)時(shí),,單調(diào)遞減,,,此時(shí)有1個(gè)零點(diǎn);當(dāng)時(shí),無零點(diǎn);當(dāng)時(shí),由得,由得,∴在單調(diào)遞減,在單調(diào)遞增,∴在處取得最小值,若,則,此時(shí)沒有零點(diǎn);若,則,此時(shí)有1個(gè)零點(diǎn);若,則,,求導(dǎo)易得,此時(shí)在,上各有1個(gè)零點(diǎn).綜上可得時(shí),沒有零點(diǎn),或時(shí),有1個(gè)零點(diǎn),時(shí),有2個(gè)零點(diǎn).(2)令,則,當(dāng)時(shí),;當(dāng)時(shí),,∴.令,則,當(dāng)時(shí),,當(dāng)時(shí),,∴,∴,,∴,即.本題考查了導(dǎo)數(shù)判斷函數(shù)零點(diǎn)問題,考查了運(yùn)用導(dǎo)數(shù)證明不等式問題,考查了分類的數(shù)學(xué)思想.本題的難點(diǎn)在于第二問不等式的證明中,合理設(shè)出函數(shù),通過比較最值證明.20.(1)(2)((3)見證明【解析】

(1)先求函數(shù)導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號變化規(guī)律確定函數(shù)單調(diào)性,最后根據(jù)函數(shù)單調(diào)性確定最小值取法;(2)先分離不等式,轉(zhuǎn)化為對應(yīng)函數(shù)最值問題,利用導(dǎo)數(shù)求對應(yīng)函數(shù)最值即得結(jié)果;(3)構(gòu)造兩個(gè)函數(shù),再利用兩函數(shù)最值關(guān)系進(jìn)行證明.【詳解】(1)當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,所以函數(shù)f(x)的最小值為f()=;(2)因?yàn)樗詥栴}等價(jià)于在上恒成立,記則,因?yàn)椋詈瘮?shù)f(x)在(0,1)上單調(diào)遞減;函數(shù)f(x)在(1,+)上單調(diào)遞增;即,即實(shí)數(shù)a的取值范圍為(.(3)問題等價(jià)于證明由(1)知道,令函數(shù)在(0,1)上單調(diào)遞增;函數(shù)在(1,+)上單調(diào)遞減;所以{,因此,因?yàn)閮蓚€(gè)等號不能同時(shí)取得,所以即對一切,都有成立.對于求不等式成立時(shí)的參數(shù)范圍問題,在可能的情況下把參數(shù)分離出來,使不等式一端是含有參數(shù)的不等式,另一端是一個(gè)區(qū)間上具體的函數(shù),這樣就把問題轉(zhuǎn)化為一端是函數(shù),另一端是參數(shù)的不等式,便于問題的解決.但要注意分離參數(shù)法不是萬能的,如果分離參數(shù)后,得出的函數(shù)解析式較為復(fù)雜,性質(zhì)很難研究,就不要使用分離參數(shù)法.21.(Ⅰ);(Ⅱ);(Ⅲ)證明見

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論