版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025-2026學年河北衡水武邑中學高三數(shù)學第一學期期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.2.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關于點(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.43.已知傾斜角為的直線與直線垂直,則()A. B. C. D.4.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.45.已知函數(shù),,,,則,,的大小關系為()A. B. C. D.6.已知全集為,集合,則()A. B. C. D.7.若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.48.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個單位長度后得到的圖象關于軸對稱;③若在上恰有7個零點,則的取值范圍為;④若在上單調遞增,則的取值范圍為.其中,判斷正確的個數(shù)為()A.1 B.2 C.3 D.49.定義在上的函數(shù)滿足,則()A.-1 B.0 C.1 D.210.已知集合,集合,則等于()A. B.C. D.11.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.12.設i為數(shù)單位,為z的共軛復數(shù),若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若曲線(其中常數(shù))在點處的切線的斜率為1,則________.14.如圖,在平行四邊形中,,,則的值為_____.15.五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個音階全用上,排成一個五個音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側,可排成______種不同的音序.16.在中,角、、所對的邊分別為、、,若,,則的取值范圍是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:(是參數(shù)).(1)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)m值.(2)設為曲線上任意一點,求的取值范圍.18.(12分)已知函數(shù).(1)若,求的取值范圍;(2)若,對,不等式恒成立,求的取值范圍.19.(12分)已知函數(shù),的最大值為.求實數(shù)b的值;當時,討論函數(shù)的單調性;當時,令,是否存在區(qū)間,,使得函數(shù)在區(qū)間上的值域為?若存在,求實數(shù)k的取值范圍;若不存在,請說明理由.20.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.21.(12分)已知函數(shù),其中.(1)當時,求在的切線方程;(2)求證:的極大值恒大于0.22.(10分)某健身館為響應十九屆四中全會提出的“聚焦增強人民體質,健全促進全民健身制度性舉措”,提高廣大市民對全民健身運動的參與程度,推出了健身促銷活動,收費標準如下:健身時間不超過1小時免費,超過1小時的部分每小時收費標準為20元(不足l小時的部分按1小時計算).現(xiàn)有甲、乙兩人各自獨立地來該健身館健身,設甲、乙健身時間不超過1小時的概率分別為,,健身時間1小時以上且不超過2小時的概率分別為,,且兩人健身時間都不會超過3小時.(1)設甲、乙兩人所付的健身費用之和為隨機變量(單位:元),求的分布列與數(shù)學期望;(2)此促銷活動推出后,健身館預計每天約有300人來參與健身活動,以這兩人健身費用之和的數(shù)學期望為依據(jù),預測此次促銷活動后健身館每天的營業(yè)額.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
利用基本初等函數(shù)的單調性判斷各選項中函數(shù)在區(qū)間上的單調性,進而可得出結果.【詳解】對于A選項,函數(shù)在區(qū)間上為增函數(shù);對于B選項,函數(shù)在區(qū)間上為增函數(shù);對于C選項,函數(shù)在區(qū)間上為減函數(shù);對于D選項,函數(shù)在區(qū)間上為增函數(shù).故選:C.本題考查函數(shù)在區(qū)間上單調性的判斷,熟悉一些常見的基本初等函數(shù)的單調性是判斷的關鍵,屬于基礎題.2.C【解析】
根據(jù)對稱性即可求出答案.【詳解】解:∵點(5,f(5))與點(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關于點(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.本題主要考查函數(shù)的對稱性的應用,屬于中檔題.3.D【解析】
傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關系,同角三角函數(shù)基本關系式即可得出結果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.本題考查了相互垂直的直線斜率之間的關系,同角三角函數(shù)基本關系式,考查計算能力,屬于基礎題.4.A【解析】
由傾斜角的余弦值,求出正切值,即的關系,求出雙曲線的離心率.【詳解】解:設雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.本題考查雙曲線的簡單幾何性質,屬于基礎題5.B【解析】
可判斷函數(shù)在上單調遞增,且,所以.【詳解】在上單調遞增,且,所以.故選:B本題主要考查了函數(shù)單調性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質,利用單調性比大小等知識,考查了學生的運算求解能力.6.D【解析】
對于集合,求得函數(shù)的定義域,再求得補集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D本題考查集合的補集、交集運算,考查具體函數(shù)的定義域,考查解一元二次不等式.7.C【解析】
由二項式系數(shù)性質,的展開式中所有二項式系數(shù)和為計算.【詳解】的二項展開式中二項式系數(shù)和為,.故選:C.本題考查二項式系數(shù)的性質,掌握二項式系數(shù)性質是解題關鍵.8.B【解析】
對函數(shù)化簡可得,進而結合三角函數(shù)的最值、周期性、單調性、零點、對稱性及平移變換,對四個命題逐個分析,可選出答案.【詳解】因為,所以周期.對于①,因為,所以,即,故①錯誤;對于②,函數(shù)的圖象向右平移個單位長度后得到的函數(shù)為,其圖象關于軸對稱,則,解得,故對任意整數(shù),,所以②錯誤;對于③,令,可得,則,因為,所以在上第1個零點,且,所以第7個零點,若存在第8個零點,則,所以,即,解得,故③正確;對于④,因為,且,所以,解得,又,所以,故④正確.故選:B.本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調性、零點、對稱性,考查學生的計算求解能力與推理能力,屬于中檔題.9.C【解析】
推導出,由此能求出的值.【詳解】∵定義在上的函數(shù)滿足,∴,故選C.本題主要考查函數(shù)值的求法,解題時要認真審題,注意函數(shù)性質的合理運用,屬于中檔題.10.B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.該題考查的是有關集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎題目.11.A【解析】
依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結果?!驹斀狻恳驗闊o窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A。本題主要考查無窮等比數(shù)列求和公式的應用。12.A【解析】
由復數(shù)的除法求出,然后計算.【詳解】,∴.故選:A.本題考查復數(shù)的乘除法運算,考查共軛復數(shù)的概念,掌握復數(shù)的運算法則是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用導數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.本題考查導數(shù)的幾何意義,考查學生的基本運算能力,是一道基礎題.14.【解析】
根據(jù)ABCD是平行四邊形可得出,然后代入AB=2,AD=1即可求出的值.【詳解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案為:﹣1.本題考查了向量加法的平行四邊形法則,相等向量和相反向量的定義,向量數(shù)量積的運算,考查了計算能力,屬于基礎題.15.1【解析】
按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個或第四個位置上,即可求出.【詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側,此時有種;②若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側;③若“角”在第二個或第四個位置上,則有種;綜上,共有種.故答案為:1.本題主要考查利用排列知識解決實際問題,涉及分步計數(shù)乘法原理和分類計數(shù)加法原理的應用,意在考查學生分類討論思想的應用和綜合運用知識的能力,屬于基礎題.16.【解析】
計算出角的取值范圍,結合正弦定理可求得的取值范圍.【詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.本題主要考查了正弦定理,正弦函數(shù)圖象和性質,考查了轉化思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)或;(2).【解析】
(1)將曲線的極坐標方程化為直角坐標方程,在直角坐標條件下求出曲線的圓心坐標和半徑,將直線的參數(shù)方程化為普通方程,由勾股定理列出等式可求的值;(2)將圓化為參數(shù)方程形式,代入由三角公式化簡可求其取值范圍.【詳解】(1)曲線C的極坐標方程是化為直角坐標方程為:直線的直角坐標方程為:圓心到直線l的距離(弦心距)圓心到直線的距離為:或(2)曲線的方程可化為,其參數(shù)方程為:為曲線上任意一點,的取值范圍是18.(1);(2).【解析】
(1)分類討論,,,即可得出結果;(2)先由題意,將問題轉化為即可,再求出,的最小值,解不等式即可得出結果.【詳解】(1)由得,若,則,顯然不成立;若,則,,即;若,則,即,顯然成立,綜上所述,的取值范圍是.(2)由題意知,要使得不等式恒成立,只需,當時,,所以;因為,所以,解得,結合,所以的取值范圍是.本題主要考查含絕對值不等式的解法,以及由不等式恒成立求參數(shù)的問題,熟記分類討論的思想、以及絕對值不等式的性質即可,屬于??碱}型.19.(1);(2)時,在單調增;時,在單調遞減,在單調遞增;時,同理在單調遞減,在單調遞增;(3)不存在.【解析】分析:(1)利用導數(shù)研究函數(shù)的單調性,可得當時,取得極大值,也是最大值,由,可得結果;(2)求出,分三種情況討論的范圍,在定義域內,分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(3)假設存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問題轉化為關于的方程在區(qū)間內是否存在兩個不相等的實根,進而可得結果.詳解:(1)由題意得,令,解得,當時,,函數(shù)單調遞增;當時,,函數(shù)單調遞減.所以當時,取得極大值,也是最大值,所以,解得.(2)的定義域為.①即,則,故在單調增②若,而,故,則當時,;當及時,故在單調遞減,在單調遞增.③若,即,同理在單調遞減,在單調遞增(3)由(1)知,所以,令,則對恒成立,所以在區(qū)間內單調遞增,所以恒成立,所以函數(shù)在區(qū)間內單調遞增.假設存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問題轉化為關于的方程在區(qū)間內是否存在兩個不相等的實根,即方程在區(qū)間內是否存在兩個不相等的實根,令,,則,設,,則對恒成立,所以函數(shù)在區(qū)間內單調遞增,故恒成立,所以,所以函數(shù)在區(qū)間內單調遞增,所以方程在區(qū)間內不存在兩個不相等的實根.綜上所述,不存在區(qū)間,使得函數(shù)在區(qū)間上的值域是.點睛:本題主要考查利用導數(shù)判斷函數(shù)的單調性以及函數(shù)的最值值,屬于難題.求函數(shù)極值、最值的步驟:(1)確定函數(shù)的定義域;(2)求導數(shù);(3)解方程求出函數(shù)定義域內的所有根;(4)列表檢查在的根左右兩側值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點值的函數(shù)值與極值的大小.20.(1)證明見解析(2)【解析】
(1)取中點,連結,證明平面得到答案.(2)如圖所示,建立空間直角坐標系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)取中點,連結,,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標系,則,可取為平面的一個法向量.設平面的一個法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.本題考查了面面垂直,二面角,意在考查學生的計算能力和空間想象能力.21.(1)(2)證明見解析【解析】
(1)求導,代入,求出在處的導數(shù)值及函數(shù)值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【詳解】(1),當時,,,則在的切線方程為;(2)證明:令,解得或,①當時,恒成立,此時函數(shù)在上單調遞減,∴函數(shù)無極值;②當時,令,解得,令,解得或,∴函數(shù)在上單調遞增,在,上單調遞減,∴;③當時,令,解得,令,解得或,∴函數(shù)在上單調遞增
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 衛(wèi)生院醫(yī)生考試題及答案
- 浠水高考模擬試題及答案
- 2025云南昭通巧家縣第五高級中學招聘2人筆試備考重點試題及答案解析
- 2025年水利執(zhí)法隊考試題及答案
- DB11-T 1970-2022 牡丹繁殖與栽培技術規(guī)程
- 2025湖南永州市寧遠縣人民醫(yī)院招聘急需緊缺醫(yī)師34人備考考試題庫及答案解析
- 2025山東煙臺新潤華投資集團有限公司及下屬單位招聘12人備考考試試題及答案解析
- 2025年甘肅省慶陽市教育局招募銀齡教學導師12人模擬筆試試題及答案解析
- 北京市疾病預防控制中心面向應屆畢業(yè)生招聘35人模擬筆試試題及答案解析
- 2025年湖南邵陽市紀委監(jiān)委所屬事業(yè)單位選調(招聘)10人備考考試題庫及答案解析
- 2025年廣西國家工作人員學法用法考試試題及答案
- DB41T 990-2014 生產(chǎn)建設項目水土保持單元工程質量評定標準
- (2025秋新版)蘇教版科學三年級上冊全冊教案
- 農(nóng)商行法律培訓課件
- 部編版小學二年級語文上冊教學反思集體備課計劃
- 執(zhí)法用手機管理辦法
- 雙重管理安全員管理辦法
- 2019-2025年中國鮮切水果行業(yè)市場調查研究及投資前景預測報告
- 染色體核型分析報告解讀要點
- (高清版)DB1303∕T 357-2023 鮮食核桃果實主要病蟲害防治技術規(guī)程
- 無人機集群技術-智能組網(wǎng)與協(xié)同 課件全套 第1-8章 緒論- 無人機集群任務分配
評論
0/150
提交評論