版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025年北京市陳經(jīng)綸學校高三數(shù)學第一學期期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是平面內(nèi)互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.2.已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關(guān)系為()A. B.C. D.3.已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內(nèi)的交點為M,若.則該雙曲線的離心率為A.2 B.3 C. D.4.復數(shù)的共軛復數(shù)為()A. B. C. D.5.已知函數(shù)f(x)=xex2+axeA.1 B.-1 C.a(chǎn) D.-a6.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.7.兩圓和相外切,且,則的最大值為()A. B.9 C. D.18.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.9.對于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.410.在棱長均相等的正三棱柱中,為的中點,在上,且,則下述結(jié)論:①;②;③平面平面:④異面直線與所成角為其中正確命題的個數(shù)為()A.1 B.2 C.3 D.411.三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.12.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)全集,集合,,則集合______.14.點到直線的距離為________15.展開式中項的系數(shù)是__________16.已知,且,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)寫出直線的普通方程和曲線的直角坐標方程;(2)設(shè)直線與曲線相交于兩點,的頂點也在曲線上運動,求面積的最大值.18.(12分)如圖,在中,,的角平分線與交于點,.(Ⅰ)求;(Ⅱ)求的面積.19.(12分)設(shè)函數(shù),,.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個零點,().(i)求的取值范圍;(ii)求證:隨著的增大而增大.20.(12分)設(shè)橢圓的左右焦點分別為,離心率,右準線為,是上的兩個動點,.(Ⅰ)若,求的值;(Ⅱ)證明:當取最小值時,與共線.21.(12分)已知函數(shù).(1)若,證明:當時,;(2)若在只有一個零點,求的值.22.(10分)某校共有學生2000人,其中男生900人,女生1100人,為了調(diào)查該校學生每周平均體育鍛煉時間,采用分層抽樣的方法收集該校100名學生每周平均體育鍛煉時間(單位:小時).(1)應抽查男生與女生各多少人?(2)根據(jù)收集100人的樣本數(shù)據(jù),得到學生每周平均體育鍛煉時間的頻率分布表:時間(小時)[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數(shù)據(jù)中有38名男學生平均每周課外體育鍛煉時間超過2小時,請完成每周平均體育鍛煉時間與性別的列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關(guān)”?男生女生總計每周平均體育鍛煉時間不超過2小時每周平均體育鍛煉時間超過2小時總計附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.879
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).2.C【解析】
可設(shè),根據(jù)在上為偶函數(shù)及便可得到:,可設(shè),,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對數(shù)的運算得到、、的大小關(guān)系,從而得到的大小關(guān)系.【詳解】解:因為,即,又,設(shè),根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個函數(shù)單調(diào)性的方法和過程:設(shè),通過條件比較與,函數(shù)的單調(diào)性的應用,屬于中檔題.3.D【解析】
本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長度,的長度即點縱坐標,然后將點縱坐標帶入圓的方程即可得出點坐標,最后將點坐標帶入雙曲線方程即可得出結(jié)果。【詳解】根據(jù)題意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因為圓的半徑為,是圓的半徑,所以,因為,,,,所以,三角形是直角三角形,因為,所以,,即點縱坐標為,將點縱坐標帶入圓的方程中可得,解得,,將點坐標帶入雙曲線中可得,化簡得,,,,故選D。本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學生的邏輯思維能力,是難題。4.D【解析】
直接相乘,得,由共軛復數(shù)的性質(zhì)即可得結(jié)果【詳解】∵∴其共軛復數(shù)為.故選:D熟悉復數(shù)的四則運算以及共軛復數(shù)的性質(zhì).5.A【解析】
令xex=t,構(gòu)造g(x)=xex,要使函數(shù)f(x)=xex2+axex-a有三個不同的零點x1,x2,【詳解】令xex=t,構(gòu)造g(x)=xex,求導得g'(x)=故g(x)在-∞,1上單調(diào)遞增,在1,+∞上單調(diào)遞減,且x<0時,g(x)<0,x>0時,g(x)>0,g(x)max=g(1)=1e,可畫出函數(shù)g(x)的圖象(見下圖),要使函數(shù)f(x)=xex2+axex-a有三個不同的零點x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故選A.解決函數(shù)零點問題,常常利用數(shù)形結(jié)合、等價轉(zhuǎn)化等數(shù)學思想.6.D【解析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D本題考查了雙曲線的定義的應用,考查了余弦定理的應用,考查了雙曲線的漸近線方程,考查了數(shù)學運算能力.7.A【解析】
由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因為兩圓和相外切所以,即當時,取最大值故選:A本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.8.D【解析】
取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.9.C【解析】
根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.本題考查中位數(shù)的計算,屬基礎(chǔ)題.10.B【解析】
設(shè)出棱長,通過直線與直線的垂直判斷直線與直線的平行,推出①的正誤;判斷是的中點推出②正的誤;利用直線與平面垂直推出平面與平面垂直推出③正的誤;建立空間直角坐標系求出異面直線與所成角判斷④的正誤.【詳解】解:不妨設(shè)棱長為:2,對于①連結(jié),則,即與不垂直,又,①不正確;對于②,連結(jié),,在中,,而,是的中點,所以,②正確;對于③由②可知,在中,,連結(jié),易知,而在中,,,即,又,面,平面平面,③正確;以為坐標原點,平面上過點垂直于的直線為軸,所在的直線為軸,所在的直線為軸,建立如圖所示的直角坐標系;,,,,,;,;異面直線與所成角為,,故.④不正確.故選:.本題考查命題的真假的判斷,棱錐的結(jié)構(gòu)特征,直線與平面垂直,直線與直線的位置關(guān)系的應用,考查空間想象能力以及邏輯推理能力.11.A【解析】分析:設(shè)三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設(shè)三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點睛:應用幾何概型求概率的方法建立相應的幾何概型,將試驗構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量.(1)一般地,一個連續(xù)變量可建立與長度有關(guān)的幾何概型,只需把這個變量放在數(shù)軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序?qū)崝?shù)對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關(guān)的幾何概型;(3)若一個隨機事件需要用三個連續(xù)變量來描述,則可用這三個變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標系即可建立與體積有關(guān)的幾何概型.12.B【解析】
依照偶函數(shù)的定義,對定義域內(nèi)的任意實數(shù),f(﹣x)=f(x),且定義域關(guān)于原點對稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點對稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.本題考查偶函數(shù)的定義,對定義域內(nèi)的任意實數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點對稱,定義域區(qū)間兩個端點互為相反數(shù).二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
分別解得集合A與集合B的補集,再由集合交集的運算法則計算求得答案.【詳解】由題可知,集合A中集合B的補集,則故答案為:本題考查集合的交集與補集運算,屬于基礎(chǔ)題.14.2【解析】
直接根據(jù)點到直線的距離公式即可求出?!驹斀狻恳罁?jù)點到直線的距離公式,點到直線的距離為。本題主要考查點到直線的距離公式的應用。15.-20【解析】
根據(jù)二項式定理的通項公式,再分情況考慮即可求解.【詳解】解:展開式中項的系數(shù):二項式由通項公式當時,項的系數(shù)是,當時,項的系數(shù)是,故的系數(shù)為;故答案為:本題主要考查二項式定理的應用,注意分情況考慮,屬于基礎(chǔ)題.16.【解析】試題分析:因,故,所以,,應填.考點:三角變換及運用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1):,:;(2)【解析】
(1)由直線參數(shù)方程消去參數(shù)即可得直線的普通方程,根據(jù)極坐標方程和直角坐標方程互化的公式即可得曲線的直角坐標方程;(2)由即可得的底,由點到直線的距離的最大值為即可得高的最大值,即可得解.【詳解】(1)由消去參數(shù)得直線的普通方程為,由得,曲線的直角坐標方程為;(2)曲線即,圓心到直線的距離,所以,又點到直線的距離的最大值為,所以面積的最大值為.本題考查了參數(shù)方程、極坐標方程和直角坐標方程的互化,考查了直線與圓的位置關(guān)系,屬于中檔題.18.(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,進而得,在中,由正弦定理得,所以的面積即可得解.試題解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面積.19.(1)見解析;(2)(i)(ii)證明見解析【解析】
(1)求出導函數(shù),分類討論即可求解;(2)(i)結(jié)合(1)的單調(diào)性分析函數(shù)有兩個零點求解參數(shù)取值范圍;(ii)設(shè),通過轉(zhuǎn)化,討論函數(shù)的單調(diào)性得證.【詳解】(1)因為,所以當時,在上恒成立,所以在上單調(diào)遞增,當時,的解集為,的解集為,所以的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為;(2)(i)由(1)可知,當時,在上單調(diào)遞增,至多一個零點,不符題意,當時,因為有兩個零點,所以,解得,因為,且,所以存在,使得,又因為,設(shè),則,所以單調(diào)遞增,所以,即,因為,所以存在,使得,綜上,;(ii)因為,所以,因為,所以,設(shè),則,所以,解得,所以,所以,設(shè),則,設(shè),則,所以單調(diào)遞增,所以,所以,即,所以單調(diào)遞增,即隨著的增大而增大,所以隨著的增大而增大,命題得證.此題考查利用導函數(shù)處理函數(shù)的單調(diào)性,根據(jù)函數(shù)的零點個數(shù)求參數(shù)的取值范圍,通過等價轉(zhuǎn)化證明與零點相關(guān)的命題.20.(Ⅰ)(Ⅱ)證明見解析.【解析】由與,得,,的方程為.設(shè),則,由得.①(Ⅰ)由,得,②,③由①、②、③三式,消去,并求得,故.(Ⅱ),當且僅當或時,取最小值,此時,,故與共線.21.(1)見解析;(2)【解析】
分析:(1)先構(gòu)造函數(shù),再求導函數(shù),根據(jù)導函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點,等價研究的零點,先求導數(shù):,這里產(chǎn)生兩個討論點,一個是a與零,一個是x與2,當時,,沒有零點;當時,先減后增,從而確定只有一個零點的必要條件,再利用零點存在定理確定條件的充分性,即得a的值.詳解:(1)當時,等價于.設(shè)函數(shù),則.當時,,所以在單調(diào)遞減.而,故當時,,即.(2)設(shè)函數(shù).在只有一個零點當且僅當在只有一個零點.(i)當時,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中建二局商務管理部招聘備考題庫及參考答案詳解
- 國家知識產(chǎn)權(quán)局專利局專利審查協(xié)作江蘇中心2026年度專利審查員公開招聘備考題庫完整參考答案詳解
- 2025年福建海峽銀行龍巖分行誠聘英才備考題庫及一套參考答案詳解
- 安徽省課程設(shè)計大賽
- 2025年中國科學院深??茖W與工程研究所招聘備考題庫(十三)附答案詳解
- 2025廣東茂名市公安局電白分局第十一批招聘警務輔助人員70人考試重點題庫及答案解析
- 2025年量子計算技術(shù)突破與應用報告
- 2025年中國社會科學院亞太與全球戰(zhàn)略研究院公開招聘第一批專業(yè)技術(shù)人員備考題庫及一套參考答案詳解
- 2025年度葫蘆島市市直部分事業(yè)單位公開招聘高層次人才84人考試重點題庫及答案解析
- 2025年東莞市公安局鳳崗分局警務輔助人員招聘12人備考題庫及1套參考答案詳解
- 2024-2025學年遼寧省大連市中山區(qū)九年級(上)期末英語試卷(含答案無聽力)
- 中山大學《信號與系統(tǒng)1》2023-2024學年第一學期期末試卷
- 自動準同期裝置技術(shù)規(guī)范書
- 【MOOC期末】《創(chuàng)新創(chuàng)業(yè)與管理基礎(chǔ)》(東南大學)中國大學慕課答案
- 機械加工設(shè)備課件 項目四 銑床的運動調(diào)整和典型結(jié)構(gòu)分析
- 電路理論知到智慧樹章節(jié)測試課后答案2024年秋同濟大學
- 【MOOC】高等數(shù)學精講 上-河北工業(yè)大學 中國大學慕課MOOC答案
- 專題15 小說閱讀 (考點訓練)中考語文考點突破(四川成都專用)
- (正式版)FZ∕T 81009-2024 人造毛皮服裝
- 24秋國家開放大學《計算機系統(tǒng)與維護》實驗1-13參考答案
- 監(jiān)理部年度培訓工作總結(jié)
評論
0/150
提交評論