解析卷人教版8年級數(shù)學上冊《全等三角形》達標測試試卷(含答案詳解)_第1頁
解析卷人教版8年級數(shù)學上冊《全等三角形》達標測試試卷(含答案詳解)_第2頁
解析卷人教版8年級數(shù)學上冊《全等三角形》達標測試試卷(含答案詳解)_第3頁
解析卷人教版8年級數(shù)學上冊《全等三角形》達標測試試卷(含答案詳解)_第4頁
解析卷人教版8年級數(shù)學上冊《全等三角形》達標測試試卷(含答案詳解)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》達標測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,小敏做了一個角平分儀ABCD,其中AB=AD,BC=DC,將儀器上的點A與∠PRQ的頂點R重合,調(diào)整AB和AD,使它們分別落在角的兩邊上,過點A、C畫一條射線AE,AE就是∠PRQ的平分線.此角平分儀的畫圖原理是()A.SSS B.SAS C.ASA D.AAS2、如圖:∠B=∠C=90°,E是BC的中點,DE平分∠ADC,則下列說法正確的有幾個(

)(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;

(4)AE⊥DE.(5)DE=AEA.2個 B.3個 C.4個 D.53、如圖,平行四邊形ABCD中,E,F(xiàn)是對角線BD上的兩點,如果添加一個條件使△ABE≌△CDF,則添加的條件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠24、如圖,在中,,D是上一點,于點E,,連接,若,則等于(

)A. B. C. D.5、如圖,在和中,,,,則(

)A.30° B.40° C.50° D.60°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,將一張直角三角形紙片對折,使點B、C重合,折痕為DE,連接DC,若AC=6cm,∠ACB=90°,∠B=30°,則△ADC的周長是_____cm.2、如圖,平分,.填空:因為平分,所以________.從而________.因此________.3、已知∠AOB=60°,以O為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內(nèi)交于點P,以OP為邊作∠POC=15°,則∠BOC的度數(shù)為__________.4、如圖,,若,則到的距離為_________.5、如圖,已知BE=DC,請?zhí)砑右粋€條件,使得△ABE≌△ACD:_____.三、解答題(5小題,每小題10分,共計50分)1、已知如圖,E.F在BD上,且AB=CD,BF=DE,AE=CF,求證:AC與BD互相平分.2、如圖,點C、F在線段BE上,∠ABC=∠DEF=90°,BC=EF,請只添加一個合適的條件使△ABC≌△DEF.(1)根據(jù)“ASA”,需添加的條件是;根據(jù)“HL”,需添加的條件是;(2)請從(1)中選擇一種,加以證明.3、如圖,等腰三角形中,,.作于點,將線段繞著點順時針旋轉(zhuǎn)角后得到線段,連接.(1)求證:;(2)延長線段,交線段于點.求的度數(shù)(用含有的式子表示).4、如圖,在四邊形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求證:AD=CD.5、小明的學習過程中,對教材中的一個有趣問題做如下探究:(1)【習題回顧】已知:如圖1,在中,,是角平分線,是高,相交于點.求證:;(2)【變式思考】如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點,其反向延長線與邊的延長線交于點,若,求和的度數(shù);(3)【探究延伸】如圖3,在中,在上存在一點,使得,角平分線交于點.的外角的平分線所在直線與的延長線交于點.若,求的度數(shù).-參考答案-一、單選題1、A【解析】【分析】根據(jù)題意兩個三角形的三條邊分別對應相等,即可利用“邊邊邊”證明這兩個三角形全等,即可選擇.【詳解】在和中,,∴,∴,即.∴此角平分儀的畫圖原理是SSS.故選:A.【考點】本題考查了三角形全等的判定和性質(zhì).根據(jù)題意找到可證明兩三角形全等的條件是解答本題的關鍵.2、B【解析】【分析】過點E作EF⊥AD垂足為點F,證明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,證明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.【詳解】解:如圖,過點E作EF⊥AD,垂足為點F,可得∠DFE=90°,則∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,,∴△DEF≌△DEC(AAS);∴CE=EF,DC=DF,∠CED=∠FED,∵E是BC的中點,∴CE=EB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△AFE≌Rt△ABE(HL);∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故結論(1)正確,則AD=AF+DF=AB+CD,故結論(3)正確;可得∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE故結論(4)正確.∵AB≠CD,AE≠DE,(5)錯誤,∴△EBA≌△DCE不可能成立,故結論(2)錯誤.綜上所知正確的結論有3個.故答案為:B.【考點】本題考查全等三角形的判定與性質(zhì)、平行線的判定等內(nèi)容,作出輔助線是解題的關鍵.3、A【解析】【分析】利用平行四邊形的性質(zhì)以及全等三角形的判定分別得出即可.【詳解】解:A、若添加條件:AE=CF,因為∠ABD=∠CDB,不是兩邊的夾角,所以不能證明△ABE≌△CDF,所以錯誤,符合題意,B、若添加條件:BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;C、若添加條件:BF=DE,可以得到BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;D、若添加條件:∠1=∠2,可以利用ASA證明△ABE≌△CDF,所以正確,不符合題意;故選:A.【考點】本題考查了平行四邊形的性質(zhì)、全等三角形的判定,解題的關鍵是掌握三角形的判定定理.4、C【解析】【分析】證明Rt△BCD≌Rt△BED(HL),由全等三角形的性質(zhì)得出CD=DE,則可得出答案.【詳解】解:,,在和中,,,,,cm,cm.故選:C.【考點】本題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定方法是解題的關鍵.5、D【解析】【分析】由題意可證,有,由三角形內(nèi)角和定理得,計算求解即可.【詳解】解:∵∴△ABC和△ADC均為直角三角形在和中∵∴∴∵∴故選D.【考點】本題考查了三角形全等,三角形的內(nèi)角和定理.解題的關鍵在于找出角度的數(shù)量關系.二、填空題1、18【解析】【分析】【詳解】解:根據(jù)折疊前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周長是18cm.故答案為8.2、

【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由內(nèi)錯角相等可以得出兩直線平行.【詳解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(內(nèi)錯角相等,兩直線平行).故答案為:∠CAB,∠CAB,DC.【考點】本題考查了平行線的判定定理以及角平分線的定義,解題的關鍵是找出∠CAB=∠2.解決該類題型只需牢牢掌握平行線的判定定理即可.3、或【解析】【分析】以O為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在內(nèi)交于點P,則OP為的平分線,以OP為邊作,則為作或的角平分線,即可求解.【詳解】解:以O為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在內(nèi)交于點P,得到OP為的平分線,再以OP為邊作,則為作或的角平分線,所以或.故答案為:或.【考點】本題考查的是復雜作圖,主要要理解作圖是在作角的平分線,同時要考慮以OP為邊作的兩種情況,避免遺漏.4、4【解析】【分析】過P點作PE⊥OB于E,根據(jù)角平分線的性質(zhì)定理可得PE=PD,即可求解.【詳解】解:如圖,過P點作PE⊥OB于E,∵,PE⊥OB,∴PE=PD=4,即P到OB的距離是4,故答案為:4.【考點】本題考查了角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)定理是解題的關鍵.5、∠B=∠C【解析】【分析】根據(jù)全等三角形的判定方法解答即可.【詳解】解:∵BE=DC,∠A=∠A,∴根據(jù)AAS,可以添加∠B=∠C,使得△ABE≌△ACD,故答案為:∠B=∠C.【考點】本題考查全等三角形的判定,解題的關鍵是熟練掌握全等三角形的判定方法,屬于中考常考題型.三、解答題1、見解析【解析】【分析】根據(jù)已知條件易證△ABE≌△DFC,由全等三角形的對應角相等可得∠B=∠D,再利用AAS證明△ABO≌△COD,所以AO=CO,BO=DO,即可證明AC與BD互相平分.【詳解】證明:∵BF=DE,∴BF-EF=DE-EF即BE=DF,在△ABE和△DFC中,∴△ABE≌△DFC(SSS),∴∠B=∠D.在△ABO和△CDO中,∴△ABO≌△CDO(AAS),∴AO=CO,BO=DO,即AC與BD互相平分.【考點】本題考查了全等三角形的判定與性質(zhì),解題關鍵是通過證明△ABE≌△DFC得∠B=∠D,為證明△ABO≌△COD提供條件.2、(1)∠ACB=∠DFE,AC=DF;(2)選擇添加條件AC=DE,證明見解析.【解析】【分析】(1)根據(jù)題意添加條件即可;(2)選擇添加條件AC=DE,根據(jù)“HL”證明即可.【詳解】(1)根據(jù)“ASA”,需添加的條件是∠ACB=∠DFE,根據(jù)“HL”,需添加的條件是AC=DF,故答案為:∠ACB=∠DFE,AC=DF;(2)選擇添加條件AC=DE證明,證明:∵∠ABC=∠DEF=90°,∴在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).【考點】本題考查了全等三角形的判定,熟知全等三角形的判定定理是解題關鍵,證明三角形全等時注意條件的對應.3、(1)見解析;(2)【解析】【分析】(1)根據(jù)“邊角邊”證,得到即可;(2)由(1)得,,再根據(jù)三角形內(nèi)角和證明即可.【詳解】證明:線段繞點順時針旋轉(zhuǎn)角得到線段,,.,.在與中,.(2)解:,,又,,【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)和三角形內(nèi)角和定理,解題關鍵是熟練運用全等三角形的判定與性質(zhì)進行證明.4、見解析【解析】【詳解】試題分析:在邊BC上截取BE=BA,連接DE,根據(jù)SAS證△ABD≌△EBD,推出AD=ED,∠A=∠BED,求出∠DEC=∠C即可.試題解析:證明:在邊BC上截取BE=BA,連接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵∠A+∠C=180°,∠BED+∠CED=180°,∴∠C=∠CED,∴CD=ED,∴AD=CD.點睛:本題考查了等腰三角形的判定,全等三角形的性質(zhì)和判定等知識點的應用,解答此題的關鍵是正確作輔助線,又是難點,解題的思路是把AD和CD放到一個三角形中,根據(jù)等腰三角形的判定進行證明,題型較好,有一定的難度.5、(1)見解析;(2)25°,25°;(3)55°【解析】【分析】(1)由余角的性質(zhì)可得∠B=∠ACD,由角平分線的性質(zhì)和外角的性質(zhì)可得結論;(2)由三角形內(nèi)角和定理可求∠GAF=130°,由角平分線的性質(zhì)可求∠GAF=65°,由余角的性質(zhì)可求解;(3)由平角的性質(zhì)和角平分線的性質(zhì)可求∠EAN=90°,由外角的性質(zhì)可求解.(1)證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;(2)解:∵∠B=40°,∠ACB=90°,∴∠GAB=∠B+∠ACB=40°+90°=130°,∵AF為∠BAG的角平分線,∴∠GAF=∠DAF130°=65°,∵CD為AB邊上的高,∴∠ADF=∠ACE=90°,∴∠CFE=90°﹣∠GAF=90°

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論