版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省醴陵市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,所有陰影四邊形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面積依次為2,4,3,則正方形D的面積為()A.9 B.8 C.27 D.452、如圖,由6個(gè)相同小正方形組成的網(wǎng)格中,A,B,C均在格點(diǎn)上,則∠ABC的度數(shù)為(
)A.45° B.50° C.55° D.60°3、如圖,在7×7的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,畫(huà)一條線段AB=,使點(diǎn)A,B在小正方形的頂點(diǎn)上,設(shè)AB與網(wǎng)格線相交所成的銳角為α,則不同角度的α有(
)A.1種 B.2種 C.3種 D.4種4、如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點(diǎn)E為AB中點(diǎn),沿過(guò)點(diǎn)E的直線折疊,使點(diǎn)B與點(diǎn)A重合,折痕現(xiàn)交于點(diǎn)F,已知EF=,則BC的長(zhǎng)是()A. B.3 C.3 D.35、如圖,嘉嘉在A時(shí)測(cè)得一棵4米高的樹(shù)的影長(zhǎng)為,若A時(shí)和B時(shí)兩次日照的光線互相垂直,則B時(shí)的影長(zhǎng)為(
)A. B. C. D.6、如圖,將△ABC放在正方形網(wǎng)格圖中(圖中每個(gè)小正方形的邊長(zhǎng)均為1),點(diǎn)A,B,C恰好在網(wǎng)格圖中的格點(diǎn)上,那么△ABC中BC邊上的高是(
)A. B. C. D.7、如圖,在中,,cm,cm,點(diǎn)、分別在、邊上.現(xiàn)將沿翻折,使點(diǎn)落在點(diǎn)處.連接,則長(zhǎng)度的最小值為(
)A.0 B.2 C.4 D.6第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖所示,數(shù)軸上點(diǎn)A所表示的數(shù)為_(kāi)______.2、在△ABC中,AD是BC邊上的中線,AD⊥AB,如果AC=5,AD=2,那么AB的長(zhǎng)是________.3、我國(guó)古代的數(shù)學(xué)名著《九章算術(shù)》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問(wèn)索長(zhǎng)幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時(shí),繩索用盡問(wèn)繩索長(zhǎng)是多少?”示意圖如下圖所示,設(shè)繩索的長(zhǎng)為尺,根據(jù)題意,可列方程為_(kāi)_________.4、如圖,該圖形是由直角三角形和正方形構(gòu)成,其中最大正方形的邊長(zhǎng)為7,則正方形A、B、C、D的面積之和為_(kāi)_________.5、如圖,在的網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)都為1,的頂點(diǎn)、、都在格點(diǎn)上,點(diǎn)為邊的中點(diǎn),則線段的長(zhǎng)為_(kāi)_______.6、如圖所示,在四邊形ABCD中,AB=5,BC=3,DE⊥AC于E,DE=3,S△DAC=6,則∠ACB的度數(shù)等于_____.7、如圖,在中,,于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱點(diǎn)落在CD的延長(zhǎng)線上.若,,則的面積為_(kāi)_________.8、《九章算術(shù)》中有一道“引葭赴岸”問(wèn)題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問(wèn)水深,葭長(zhǎng)各幾何?”題意是:有一個(gè)池塘,其底面是邊長(zhǎng)為10尺的正方形,一棵蘆葦AB生長(zhǎng)在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的B'(如圖).則蘆葦長(zhǎng)_____尺.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖所示,在中,,,,為邊上的中點(diǎn).(1)求、的長(zhǎng)度;(2)將折疊,使與重合,得折痕;求、的長(zhǎng)度.2、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.3、一架云梯長(zhǎng)25m,如圖所示斜靠在一而墻上,梯子底端C離墻7m.(1)這個(gè)梯子的頂端A距地面有多高?(2)如果梯子的頂端下滑了4m,那么梯子的底部在水平方向滑動(dòng)了多少米?4、如圖,在△ABC中,∠C=90°,M是BC的中點(diǎn),MD⊥AB于D,求證:.5、如圖,某港口位于東西方向的海岸線上.“遠(yuǎn)航”號(hào)、“海天”號(hào)輪船同時(shí)離開(kāi)港口,各自沿一固定方向航行,“遠(yuǎn)航”號(hào)每小時(shí)航行16海里,“海天”號(hào)每小時(shí)航行12海里.它們離開(kāi)港口一個(gè)半小時(shí)后分別位于點(diǎn)Q,R處,且相距30海里.如果知道“遠(yuǎn)航”號(hào)沿東北方向航行,能知道“海天”號(hào)沿哪個(gè)方向航行嗎?6、若的三邊,,滿足條件,試判斷的形狀.7、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車(chē)在公路上疾駛.他趕緊拿出紅外線測(cè)距儀,測(cè)得汽車(chē)與他相距400米,10秒后,汽車(chē)與他相距500米,你能幫小王計(jì)算敵方汽車(chē)的速度嗎?-參考答案-一、單選題1、A【解析】【分析】設(shè)正方形D的面積為x,根據(jù)圖形得出方程2+4=x-3,求出即可.【詳解】∵正方形A、B、C的面積依次為2、4、3,∴根據(jù)圖形得:2+4=x?3.解得:x=9.故選A.【考點(diǎn)】本題考查了勾股定理,根據(jù)圖形推出四個(gè)正方形的關(guān)系是解決問(wèn)題的關(guān)鍵.2、A【解析】【分析】連接AC,利用勾股定理分別求出AB、AC、BC,根據(jù)勾股定理的逆定理得到△ABC是等腰直角三角形,∠ACB=90°,再根據(jù)三角形內(nèi)角和定理得到答案.【詳解】連接AC,∵,,,∴,AC=BC,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=(180°-∠ACB)=45°.故選A.【考點(diǎn)】本題考查了等腰三角形,勾股定理的逆定理,解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)建三角形,熟練掌握等腰三角形的定義和性質(zhì),熟練運(yùn)用勾股定理的逆定理判斷直角三角形.3、C【解析】【詳解】如圖,(1)當(dāng)AB=時(shí),AB與網(wǎng)格線相交所成的兩個(gè)銳角:∠=45°;(2)當(dāng)AB=時(shí),AB與網(wǎng)格線相交所成的銳角∠有2個(gè)不同的角度;綜上所述,AB與網(wǎng)格線相交所成的銳角的不同角度有3個(gè).故選C.4、B【解析】【分析】折疊的性質(zhì)主要有:1.重疊部分全等;2.折痕是對(duì)稱軸,對(duì)稱點(diǎn)的連線被對(duì)稱軸垂直平分.由折疊的性質(zhì)可知,所以可求出∠AFB=90°,再直角三角形的性質(zhì)可知,所以,的長(zhǎng)可求,再利用勾股定理即可求出BC的長(zhǎng).【詳解】解:AB=AC,,故選B.【考點(diǎn)】本題考查了折疊的性質(zhì)、等腰直角三角形的判斷和性質(zhì)以及勾股定理的運(yùn)用,求出∠AFB=90°是解題的關(guān)鍵.5、A【解析】【分析】根據(jù)勾股定理,求出FC=,令DE=x,在Rt中,EC2=,在Rt中,EC2==,代入求解即可.【詳解】解:由題意,得∠ECF=∠CDF=∠CDE=90°,CD=4m,=,由勾股定理,得FC=,EC2=,EC2=,∴=,令DE=x,則EF=x+8,∴,整理,得16x=32,解得x=2.故選:A.【考點(diǎn)】本題考查利用勾股定理求線段長(zhǎng),拓展一元一次方程,正確的運(yùn)算能力是解決問(wèn)題的關(guān)鍵.6、A【解析】【詳解】先用勾股定理耱出三角形的三邊,再根據(jù)勾股定理的逆定理判斷出△ABC是直角三角形,最后設(shè)BC邊上的高為h,利用三角形面積公式建立方程即可得出答案.解:由勾股定理得:,,,,即∴△ABC是直角三角形,設(shè)BC邊上的高為h,則,∴.故選A.點(diǎn)睛:本題主要考查勾股理及其逆定理.借助網(wǎng)格利用勾股定理求邊長(zhǎng),并用勾股定理的逆定理來(lái)判斷三角形是否是直角三角形是解題的關(guān)鍵.7、C【解析】【分析】當(dāng)H落在AB上,點(diǎn)D與B重合時(shí),AH長(zhǎng)度的值最小,根據(jù)勾股定理得到AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,于是得到結(jié)論.【詳解】解:當(dāng)H落在AB上,點(diǎn)D與B重合時(shí),AH長(zhǎng)度的值最小,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,∴AH=AB-BH=4cm.故選:C.【考點(diǎn)】本題考查了翻折變換(折疊問(wèn)題),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)數(shù)軸上點(diǎn)的特點(diǎn)和相關(guān)線段的長(zhǎng),結(jié)合勾股定理求出斜邊長(zhǎng),即可求出-1和A之間的線段的長(zhǎng),即可知A所表示的數(shù).【詳解】圖中直角三角形的兩直角邊為1,2,所以斜邊長(zhǎng)為,那么-1和A之間的距離為,那么數(shù)軸上點(diǎn)A所表示的數(shù)為:.故答案為:.【考點(diǎn)】本題考查實(shí)數(shù)與數(shù)軸之間的對(duì)應(yīng)關(guān)系以及勾股定理,利用勾股定理求出直角三角形的斜邊的長(zhǎng)是解答本題的關(guān)鍵.2、3【解析】【分析】過(guò)點(diǎn)C作CE∥AB交AD延長(zhǎng)線于E,先證△ABD≌△ECD(AAS),求出AE=2AD=4,在Rt△AEC中,即可.【詳解】解:過(guò)點(diǎn)C作CE∥AB交AD延長(zhǎng)線于E,∵AD是BC邊上的中線,∴BD=CD,∵AD⊥AB,CE∥AB,∴AD⊥CE,∠ABD=∠ECD,∴∠E=90°,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴AB=EC,AD=ED=2,∴AE=2AD=4,在Rt△AEC中,,∴AB=CE=3.故答案為:3.【考點(diǎn)】本題考查中線性質(zhì),平行線性質(zhì),三角形全等判定與性質(zhì),勾股定理,掌握中線性質(zhì),平行線性質(zhì),三角形全等判定與性質(zhì),勾股定理,關(guān)鍵是利用輔助線構(gòu)造三角形全等.3、x2?(x?3)2=82【解析】【分析】設(shè)繩索長(zhǎng)為x尺,根據(jù)勾股定理列出方程解答即可.【詳解】解:設(shè)繩索長(zhǎng)為x尺,根據(jù)題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出相應(yīng)方程是解題的關(guān)鍵.4、49【解析】【分析】根據(jù)正方形A,B,C,D的面積和等于最大的正方形的面積,求解即可求出答案.【詳解】如圖對(duì)所給圖形進(jìn)行標(biāo)注:因?yàn)樗械娜切味际侵苯侨切?,所有的四邊形都是正方形,所以正方形A的面積,正方形B的面積,正方形C的面積,正方形D的面積.因?yàn)?,,所以正方形A,B,C,D的面積和.故答案為:49.【考點(diǎn)】本題主要考查了勾股定理、正方形的性質(zhì),面積的計(jì)算,掌握勾股定理是解本題的關(guān)鍵.5、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質(zhì)即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點(diǎn)O為AB邊的中點(diǎn),∴CO=AB=2.5,故答案為:2.5.【考點(diǎn)】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質(zhì)等知識(shí),熟練掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.6、90°##90度【解析】【分析】根據(jù)三角形面積公式求出AC=4,根據(jù)勾股定理逆定理即可求出∠ACB=90°.【詳解】解:∵DE⊥AC于E,DE=3,S△DAC=6,∴×AC×DE=6,∴AC=4,∴,∵AB=5,∴AB2=25,∴,∴∠ACB=90°.故答案為:90°【考點(diǎn)】本題考查了勾股定理逆定理和三角形的面積應(yīng)用,熟練掌握勾股定理逆定理是解題關(guān)鍵.7、【解析】【分析】在△ABC中由等面積求出,進(jìn)而得到,設(shè)BE=x,進(jìn)而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設(shè)BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點(diǎn)】本題考查了勾股定理求線段長(zhǎng)、折疊的性質(zhì)等,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練使用勾股定理求線段長(zhǎng).8、13【解析】【分析】將其轉(zhuǎn)化為數(shù)學(xué)幾何圖形,如圖所示,根據(jù)題意,可知B'C=5尺,設(shè)水深A(yù)C=x尺,則蘆葦長(zhǎng)(x+1)尺,根據(jù)勾股定理建立方程,求出的方程的解即可得到蘆葦?shù)拈L(zhǎng)和水深.【詳解】解:設(shè)水深x尺,則蘆葦長(zhǎng)(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故蘆葦長(zhǎng)13尺,故答案為:13【考點(diǎn)】本題考查勾股定理,和列方程解決實(shí)際問(wèn)題,能夠在實(shí)際問(wèn)題中找到直角三角形并應(yīng)用勾股定理是解決本題的關(guān)鍵.三、解答題1、(1)BD=2,;(2),【解析】【分析】(1)由勾股定理求出BC=4,再根據(jù)中點(diǎn)的性質(zhì)可得到BD,然后再一次運(yùn)用勾股定理求出AD即可;(2)設(shè),則,,利用勾股定理列出方程解,從而得解.【詳解】(1)∵在中,,,∴在中,∴又∵為邊上的中點(diǎn)∴∴在中,∴(2)折疊后如圖所示,為折痕,聯(lián)結(jié)設(shè),則,在中,,即解得:∴∴【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,也考查了折疊的性質(zhì).是常見(jiàn)中考題型.2、(1)A、C兩地之間的距離為14.1km;(2)C港在A港北偏東15°的方向上.【解析】【分析】(1)根據(jù)方位角的定義可得出∠ABC=90°,再根據(jù)勾股定理可求得AC的長(zhǎng)為14.1.(2)由(1)可知△ABC為等腰直角三角形,從而得出∠BAC=45°,求出∠CAM=15°,所而確定C港在A港的什么方向.【詳解】(1)由題意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴AC==≈14.1.答:A、C兩地之間的距離為14.1km.(2)由(1)知,△ABC為等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏東15°的方向上.【考點(diǎn)】本題考查了方位角的概念及勾股定理及其逆定理,正確理解方位角是解題的關(guān)鍵.3、(1)這個(gè)梯子的頂端距地面有高;(2)梯子的底部在水平方向滑動(dòng)了.【解析】【分析】(1)根據(jù)勾股定理即可求解;(2)先求出BD,再根據(jù)勾股定理即可求解.【詳解】解:(1)由題意可知:,;,在中,由勾股定理得:,∴,因此,這個(gè)梯子的頂端距地面有高.(2)由圖可知:AD=4m,,在中,由勾股定理得:,∴,∴.答:梯子的底部在水平方向滑動(dòng)了.【考點(diǎn)】此題主要考查勾股定理的實(shí)際應(yīng)用,解題的關(guān)鍵是根據(jù)題意在直角三角形中,利用勾股定理進(jìn)行求解.4、見(jiàn)解析【解析】【分析】連接AM得到三個(gè)直角三角形,運(yùn)用勾股定理分別表示出AD2、AM2、BM2進(jìn)行代換就可以最后得到所要證明的結(jié)果.【詳解】證明:連接MA,∵M(jìn)D⊥AB,∴AD2=AM2-MD2,BM2=BD2+MD2,∵∠C=90°,∴AM2=AC2+CM2∵M(jìn)為BC中點(diǎn),∴
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 保溫瓦殼-酚醛建設(shè)項(xiàng)目可行性分析報(bào)告(總投資21000萬(wàn)元)
- 深度解析(2026)GBT 19216.2-2021在火焰條件下電纜或光纜的線路完整性試驗(yàn) 第2部分:火焰溫度不低于830 ℃的供火并施加沖擊振動(dòng)額定電壓0.61 kV及以下外徑不超過(guò)20 mm電纜的試驗(yàn)方法2026
- 工業(yè)地坪項(xiàng)目可行性分析報(bào)告范文(總投資18000萬(wàn)元)
- 儲(chǔ)存IC項(xiàng)目可行性分析報(bào)告范文(總投資3000萬(wàn)元)
- 項(xiàng)目副總監(jiān)面試題及答案
- 電信行業(yè)人事部經(jīng)理面試題庫(kù)及解析
- 安全巡視員考試題
- 深度解析(2026)《GBT 18850-2002工業(yè)用金屬絲篩網(wǎng) 技術(shù)要求和檢驗(yàn)》
- 個(gè)人理財(cái)規(guī)劃師證書(shū)考試復(fù)習(xí)資料及重點(diǎn)串講含答案
- 聲學(xué)計(jì)量?jī)x器項(xiàng)目可行性分析報(bào)告范文
- 2025至2030中國(guó)農(nóng)業(yè)機(jī)械化行業(yè)市場(chǎng)深度研究與戰(zhàn)略咨詢分析報(bào)告
- 壓力管道年度檢查報(bào)告2025.12.8修訂
- 燈具制造工QC管理競(jìng)賽考核試卷含答案
- 2025年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)氧化鎳市場(chǎng)運(yùn)行態(tài)勢(shì)及行業(yè)發(fā)展前景預(yù)測(cè)報(bào)告
- 煙花倉(cāng)儲(chǔ)租賃合同范本
- 2025年《法律職業(yè)倫理》知識(shí)點(diǎn)總結(jié)試題及答案
- 2025年人力資源畢業(yè)論文人力資源畢業(yè)論文選題方向(四)
- 2025年信息安全工程師考試試題及答案
- 阿勒泰簡(jiǎn)介課件
- 化工設(shè)備基本知識(shí)培訓(xùn)
- 貓咖創(chuàng)業(yè)策劃書(shū)模板范文
評(píng)論
0/150
提交評(píng)論