版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
重慶市巴南中學(xué)7年級數(shù)學(xué)下冊第四章三角形專項測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、在△ABC中,若AB=3,BC=4,且周長為奇數(shù),則第三邊AC的長可以是()A.1 B.3 C.4 D.52、三根小木棒擺成一個三角形,其中兩根木棒的長度分別是和,那么第三根小木棒的長度不可能是()A. B. C. D.3、如圖是5×5的正方形網(wǎng)格中,以D,E為頂點作位置不同的格點的三角形與△ABC全等,這樣格點三角形最多可以畫出()A.2個 B.3個 C.4個 D.5個4、以下列長度的各組線段為邊,能組成三角形的是()A.,, B.,,C.,, D.,,5、如圖,點,在線段上,與全等,其中點與點,點與點是對應(yīng)頂點,與交于點,則等于()A. B. C. D.6、如圖,若MB=ND,∠MBA=∠NDC,下列條件中不能判定的是()A.AM=CN B. C.AB=CD D.∠M=∠N7、以下列各組線段為邊,能組成三角形的是()A.2cm、10cm、13cm B.3cm、7cm、4cmC.4cm、4cm、4cm D.5cm、14cm、6cm8、如圖,AC=DC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列選項中的()A.∠A=∠D B.BC=ECC.AB=DE D.∠B=∠E9、如圖,ABC≌DEF,點B、E、C、F在同一直線上,若BC=7,EC=4,則CF的長是()A.2 B.3 C.4 D.710、下列四個圖形中,BE不是△ABC的高線的圖是()A. B.C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在中,,點D,E在邊BC上,,若,,則CE的長為______.2、如圖,AB=DE,AC=DF,BF=CE,點B、F、C、E在一條直線上,AB=4,EF=6,求△ABC中AC邊的取值范圍.3、如圖,點F,A,D,C在同一條直線上,,,,則AC等于_____.4、如圖,點C是線段AB的中點,.請你只添加一個條件,使得≌.(1)你添加的條件是______;(要求:不再添加輔助線,只需填一個答案即可)(2)依據(jù)所添條件,判定與全等的理由是______.5、如圖,已知,請?zhí)砑右粋€條件,使得,則添加的條件可以為___(只填寫一個即可).6、如圖,在△ABC中,點D,E,F(xiàn)分別為BC,AD,CE的中點,且S△BEF=2cm2,則S△ABC=__________.7、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點A順時針旋轉(zhuǎn)90°至AB′,連接B'C,則△AB′C的面積為_____.8、如圖,在△ABC中,AD是BC邊上的中線,BE是△ABD中AD邊上的中線,若△ABC的面積是80,則△ABE的面積是________.9、等腰三角形的一條邊長為4cm,另一條邊長為6cm,則它的周長是________.10、在△ABC中,若AC=3,BC=7則第三邊AB的取值范圍為________.三、解答題(6小題,每小題10分,共計60分)1、李華同學(xué)用11塊高度都是1cm的相同長方體小木塊,壘了兩堵與地面垂直的木墻,木墻之間剛好可以放進(jìn)一個正方形ABCD(∠ABC=90°,AB=BC),點B在EF上,點A和C分別與木墻的頂端重合,求兩堵木墻之間的距離EF.2、探究與發(fā)現(xiàn):如圖①,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連接DE.(1)當(dāng)∠BAD=60°時,求∠CDE的度數(shù);(2)當(dāng)點D在BC(點B、C除外)邊上運動時,試猜想∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由.(3)深入探究:如圖②,若∠B=∠C,但∠C≠45°,其他條件不變,試探究∠BAD與∠CDE的數(shù)量關(guān)系.3、在四邊形ABCD中,,點E在直線AB上,且.(1)如圖1,若,,,求AB的長;(2)如圖2,若DE交BC于點F,,求證:.4、如圖1,AM為△ABC的BC邊的中線,點P為AM上一點,連接PB.(1)若P為線段AM的中點.①設(shè)△ABP的面積為S1,△ABC的面積為S,求的值;②已知AB=5,AC=3,設(shè)AP=x,求x的取值范圍.(2)如圖2,若AC=BP,求證:∠BPM=∠CAM.5、如圖,AD,BC相交于點O,AO=DO.(1)如果只添加一個條件,使得△AOB≌△DOC,那么你添加的條件是(要求:不再添加輔助線,只需填一個答案即可);(2)根據(jù)已知及(1)中添加的一個條件,證明AB=DC.6、如圖所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD與CE交于點F,且AD=CD.(1)求證:△ABD≌△CFD;(2)已知BC=9,AD=6,求AF的長.-參考答案-一、單選題1、C【分析】先求解的取值范圍,再利用周長為奇數(shù),可得為偶數(shù),從而可得答案.【詳解】解:AB=3,BC=4,即△ABC周長為奇數(shù),而為偶數(shù),或或不符合題意,符合題意;故選C【點睛】本題考查的是三角形三邊的關(guān)系,掌握“三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解本題的關(guān)鍵.2、D【分析】設(shè)第三根木棒長為x厘米,根據(jù)三角形的三邊關(guān)系可得8﹣5<x<8+5,確定x的范圍即可得到答案.【詳解】解:設(shè)第三根木棒長為x厘米,由題意得:8﹣5<x<8+5,即3<x<13,故選:D.【點睛】此題主要考查了三角形的三邊關(guān)系,要注意三角形形成的條件:任意兩邊之和>第三邊,任意兩邊之差<第三邊.3、C【分析】觀察圖形可知:DE與AC是對應(yīng)邊,B點的對應(yīng)點在DE上方兩個,在DE下方兩個共有4個滿足要求的點,也就有四個全等三角形.【詳解】根據(jù)題意,運用“SSS”可得與△ABC全等的三角形有4個,線段DE的上方有兩個點,下方也有兩個點,如圖.故選C.【點睛】本題考查三角形全等的判定方法,解答本題的關(guān)鍵是按照順序分析,要做到不重不漏.4、C【分析】根據(jù)三角形三條邊的關(guān)系計算即可.【詳解】解:A.∵2+4=6,∴,,不能組成三角形;B.∵2+5<9,∴,,不能組成三角形;C.∵7+8>10,∴,,能組成三角形;D.∵6+6<13,∴,,不能組成三角形;故選C.【點睛】本題考查了三角形三條邊的關(guān)系,熟練掌握三角形三條邊的關(guān)系是解答本題的關(guān)鍵.三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.5、D【分析】根據(jù)點與點,點與點是對應(yīng)頂點,得到,根據(jù)全等三角形的性質(zhì)解答.【詳解】解:與全等,點與點,點與點是對應(yīng)頂點,,.故選:D【點睛】本題主要考查了全等三角形的性質(zhì),熟練掌握全等三角形的對應(yīng)邊相等,對應(yīng)角相等是解題的關(guān)鍵.6、A【分析】根據(jù)兩個三角形全等的判定定理,有AAS、SSS、ASA、SAS四種.逐條驗證.【詳解】解:A、根據(jù)條件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故A選項符合題意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B選項不符合題意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C選項不符合題意;D、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故D選項不符合題意.故選:A.【點睛】本題重點考查了三角形全等的判定定理,兩個三角形全等共有四個定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本題是一道較為簡單的題目.7、C【分析】由題意根據(jù)“三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”對各選項進(jìn)行逐一分析即可.【詳解】解:根據(jù)三角形的三邊關(guān)系,A、2+10<13,不能組成三角形,不符合題意;B、3+4=7,不能夠組成三角形,不符合題意;C、4+4>4,能組成三角形,符合題意;D、5+6<14,不能組成三角形,不符合題意.故選:C.【點睛】本題主要考查三角形三邊關(guān)系,注意掌握判斷能否組成三角形的簡便方法是看較小的兩個數(shù)的和是否大于第三個數(shù).8、C【分析】根據(jù)全等三角形的判定定理進(jìn)行分析即可;【詳解】根據(jù)已知條件可得,即,∵AC=DC,∴已知三角形一角和角的一邊,根據(jù)全等條件可得:A.∠A=∠D,可根據(jù)ASA證明,A正確;B.BC=EC,可根據(jù)SAS證明,B正確;C.AB=DE,不能證明,C故錯誤;D.∠B=∠E,根據(jù)AAS證明,D正確;故選:C.【點睛】本題主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解題的關(guān)鍵.9、B【分析】根據(jù)全等三角形的性質(zhì)可得,根據(jù)即可求得答案.【詳解】解:ABC≌DEF,點B、E、C、F在同一直線上,BC=7,EC=4,故選B【點睛】本題考查了全等三角形的性質(zhì),掌握全等三角形的性質(zhì)是解題的關(guān)鍵.10、C【分析】利用三角形的高的定義可得答案.【詳解】解:BE不是△ABC的高線的圖是C,故選:C.【點睛】此題主要考查了三角形的高,關(guān)鍵是掌握從三角形的一個頂點向底邊作垂線,垂足與頂點之間的線段叫做三角形的高.二、填空題1、5【分析】由題意易得,然后可證,則有,進(jìn)而問題可求解.【詳解】解:∵,∴,∵,∴(ASA),∴,∵,,∴,∴;故答案為5.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.2、2<AC<10【分析】由BF=CE得到BC=EF=6,再根據(jù)三角形三邊關(guān)系求解即可.【詳解】解:∵BF=CE,點B、F、C、E在一條直線上,∴BF+FC=CE+FC,∴BC=EF=6,∵AB=4,∴6-4<AC<6+4,即2<AC<10,∴AC邊的取值范圍為2<AC<10.【點睛】本題考查三角形的三邊關(guān)系,熟知一個三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答的關(guān)鍵.3、6.5【分析】由全等三角形的性質(zhì)可得到AC=DF,從而推出AF=CD,再由,,求出,則.【詳解】解:∵△ABC≌△DEF,∴AC=DF,即AF+AD=CD+AD,∴AF=CD,∵,,∴,∴,∴,故答案為:6.5.【點睛】本題主要考查了全等三角形的性質(zhì),線段的和差,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì).4、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一)SAS【分析】(1)由已知條件可得兩個三角形有一組對應(yīng)邊相等,一組對應(yīng)角相等,根據(jù)三角形全等的判定方法添加條件即可;(2)根據(jù)添加的條件,寫出判斷的理由即可.【詳解】解:(1)添加的條件是:AD=CE(或∠D=∠E或∠ACD=∠B)故答案為:AD=CE(或∠D=∠E或∠ACD=∠B)(2)若添加:AD=CE∵點C是線段AB的中點,∴AC=BC∵∴∴≌(SAS)故答案為:SAS【點睛】本題主要考查了添加條件判斷三角形全等,熟練掌握全等三角形的判斷方法是解答本題的關(guān)鍵.5、或【分析】根據(jù)全等三角形的判定方法即可解決問題.【詳解】解:由題意,,根據(jù),可以添加,使得,根據(jù),可以添加,使得.故答案為:或【點睛】本題主要考查了全等三角形的判定,熟練掌握全等三角形的判定方法——邊角邊、角邊角、角角邊、邊邊邊是解題的關(guān)鍵.6、8cm2【分析】由于三角形的中線將三角形分成面積相等的兩部分,則S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E點為AD的中點得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.【詳解】解:∵F點為CE的中點,∴S△CFB=S△EFB=2cm2,∴S△CEB=4cm2,∵D點為BC的中點,∴S△BDE=S△BCE=2cm2,∵E點為AD的中點,∴S△ABD=2S△BDE=4cm2,∴S△ABC=2S△ABD=8cm2.故答案為:8cm2.【點睛】本題考查了三角形的中線,根據(jù)三角形的中線等分三角形的面積是解本題的關(guān)鍵.7、【分析】根據(jù)題意過點B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過點B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點睛】本題主要考查三角形全等的判定與性質(zhì)和旋轉(zhuǎn)的性質(zhì)以及勾股定理,根據(jù)題意利用全等三角形的判定證明△ACB≌△B'HA是解決問題的關(guān)鍵.8、20【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可解答.【詳解】解:∵AD是BC上的中線,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD邊上的中線,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面積是80,∴S△ABE=×80=20.故答案為:20.【點睛】本題主要考查了三角形面積的求法,掌握三角形的中線將三角形分成面積相等的兩部分,是解答本題的關(guān)鍵.9、16cm或14cm【分析】根據(jù)題意分腰為6cm和底為6cm兩種情況,分別求出即可.【詳解】解:①當(dāng)腰為6cm時,它的周長為6+6+4=16(cm);②當(dāng)?shù)诪?cm時,它的周長為6+4+4=14(cm);故答案為:16cm或14cm.【點睛】本題考查了等腰三角形的性質(zhì)的應(yīng)用,注意:等腰三角形的兩腰相等,注意分類討論.10、4<AB<10【分析】根據(jù)三角形的三邊關(guān)系,直接求解即可.【詳解】解:∵在△ABC中,AC=3,BC=7,,即,解得.故答案為:.【點睛】本題考查的是三角形的三邊關(guān)系,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.三角形中第三邊的長大于其他兩邊之差,小于其他兩邊之和.三、解答題1、11cm【分析】根據(jù)∠ABE的余角相等求出∠EAB=∠CBF,然后利用“角角邊”證明△ABE和△BCF全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=BF,BE=CF,于是得到結(jié)論.【詳解】解:∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠EAB+∠ABE=90°,∵∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠EAB=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF=5cm,BE=CF=6cm,∴EF=5+6=11(cm).【點睛】本題考查了全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即全等三角形的對應(yīng)邊相等、對應(yīng)角相等)是解題的關(guān)鍵.2、(1)30°;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE.【分析】(1)根據(jù)三角形的外角的性質(zhì)求出∠ADC,結(jié)合圖形計算即可;(2)設(shè)∠BAD=x,根據(jù)三角形的外角的性質(zhì)求出∠ADC,結(jié)合圖形計算即可;(3)設(shè)∠BAD=x,仿照(2)的解法計算.【詳解】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:設(shè)∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=,∴∠CDE=45°+x﹣=x,∴∠BAD=2∠CDE;(3)設(shè)∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+x,∴∠CDE=∠B+x﹣(∠C+x)=x,∴∠BAD=2∠CDE.【點睛】本題考查了三角形內(nèi)角和和外角的性質(zhì),解題關(guān)鍵是熟練掌握三角形內(nèi)角和和外角性質(zhì),通過設(shè)參數(shù)計算,發(fā)現(xiàn)角之間的關(guān)系3、(1)5;(2)證明見解析【分析】(1)推出∠ADE=∠BEC,根據(jù)AAS證△AED≌△CEB,推出AE=BC,BE=AD,代入求出即可;(2)推出∠A=∠EBC,∠AED=∠BCE,根據(jù)AAS證△AED≌△BCE,推出AD=BE,AE=BC,即可得出結(jié)論.【詳解】(1)解:∵∠DEC=∠A=90°,∴∠ADE+∠AED=90°,∠AED+∠BEC=90°,∴∠ADE=∠BEC,∵,∠A=90°,∴∠B+∠A=180°,∴∠B=∠A=90°,在△AED和△CEB中,∴△AED≌△BCE(AAS),∴AE=BC=3,BE=AD=2,∴AB=AE+BE=2+3=5.(2)證明:∵,∴∠A=∠EBC,∵∠DFC=∠AEC,∠DFC=∠BCE+∠DEC,∠AEC=∠AED+∠DEC,∴∠AED=∠BCE,在△AED和△BCE中,∴△AED≌△BCE(AAS),∴AD=BE,AE=BC,∵BC=AE=AB+BE=AB+AD,即AB+AD=BC.【點睛】本題考查了三角形的外角的性質(zhì),全等三角形的性質(zhì)和判定,平行線的性質(zhì)等知識點的運用,掌握“利用證明兩個三角形全等”是解本題的關(guān)鍵.4、(1)①,②;(2)證明見解析【分析】(1)①由中線定義即可得,故②過C點作AB平行線,過B點作AC平行線,相交于點N,連接ME,可得,AB=CE,則在中,有兩邊之和大于第三邊,兩邊之和小于第三邊,即可求出AE的取值范圍,即,又因為P為線段AM,故.(2)延長PM到點D使PM=DM,連接DC,由邊角邊可證明,則對應(yīng)邊BP=CD相等,由等角對等邊即可求得∠BPM=∠CDM,同理可得∠CAM=∠CDM,所以∠BPM=∠CAM.【詳解】(1)①由AM為△ABC的BC邊的中線可知由P為線段AM的中點可知則,故②過C點作AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年哈爾濱醫(yī)科大學(xué)附屬第二醫(yī)院公開招聘病房主任、副主任崗位15人備考筆試題庫及答案解析
- 深度解析(2026)《GBT 26882.1-2024糧油儲藏 糧情測控系統(tǒng) 第1部分:通則》
- 深度解析(2026)《GBT 26025-2010連續(xù)鑄鋼結(jié)晶器用銅模板》(2026年)深度解析
- 深度解析(2026)《GBT 25669.1-2010鏜銑類數(shù)控機床用工具系統(tǒng) 第1部分:型號表示規(guī)則》(2026年)深度解析
- 2025山東聊城市屬國有控股公司電商平臺項目招聘100人備考筆試題庫及答案解析
- 2025廣東中山市民眾錦標(biāo)學(xué)校教師招聘參考考試試題及答案解析
- 2025河南開封職業(yè)學(xué)院招聘專職教師81人參考考試試題及答案解析
- 2025年甘肅省嘉峪關(guān)市人民社區(qū)衛(wèi)生服務(wù)中心招聘備考考試題庫及答案解析
- 2025云南昆華醫(yī)院投資管理有限公司(云南新昆華醫(yī)院)招聘(3人)模擬筆試試題及答案解析
- 2025年東北農(nóng)業(yè)大學(xué)財務(wù)處招聘3人參考考試題庫及答案解析
- 酒店情況診斷報告
- GB/T 45795-2025大氣顆粒物PM10、PM2.5質(zhì)量濃度觀測光散射法
- 2025年夏季山東高中學(xué)業(yè)水平合格考地理試卷試題(含答案)
- DBJ04-T483-2025 海綿型城市道路與廣場設(shè)計標(biāo)準(zhǔn)
- 農(nóng)藥運輸儲存管理制度
- TD/T 1036-2013土地復(fù)墾質(zhì)量控制標(biāo)準(zhǔn)
- 童年的閱讀測試題及答案
- 爆破備案工作報告
- 客戶押款協(xié)議書范本
- 地理建筑特征教案課件
- 1.1冪的乘除第4課時(課件)-2024-2025學(xué)年七年級數(shù)學(xué)下冊同步課堂(北師大版)
評論
0/150
提交評論