版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第1節(jié)計(jì)數(shù)原理與排列組合
知識(shí)點(diǎn)一兩個(gè)技數(shù)原理
1.分類加法計(jì)數(shù)原理
完成一件事,有〃類辦法,在第1類辦法中有叫種不同的辦法,在第2類辦法中有加2種不同的方法,,?,>
在第〃類辦法中有見(jiàn)種不同的方法,那么完成這件事共有:N=+加2+…+%種不同的方法.
2.分步乘法計(jì)數(shù)原理
完成一件事,需要分成〃個(gè)步驟,做第1步有叫種不同的方法,做第2步有丐種不同的方法,…,做
第"步有機(jī)"種不同的方法,那么完成這件事共有:N=mi-m2…-加”種不同的方法.
3.兩個(gè)計(jì)數(shù)原理的綜合應(yīng)用
如果完成一件事的各種方法是相互獨(dú)立的,那么計(jì)算完成這件事的方法數(shù)時(shí),使用分類計(jì)數(shù)原理.如
果完成一件事的各個(gè)步驟是相互聯(lián)系的,即各個(gè)步驟都必須完成,這件事才告完成,那么計(jì)算完成這件事
的方法數(shù)時(shí),使用分步計(jì)數(shù)原理.
知識(shí)點(diǎn)二排列組合
1.排列問(wèn)題
(1)定義:從"個(gè)不同元素中取出機(jī)(機(jī)《個(gè)元素排成一列,叫做從〃個(gè)不同元素中取出m個(gè)元素的一個(gè)
排列.從〃個(gè)不同元素中取出加(加4")個(gè)元素的所有排列的個(gè)數(shù),叫做從"個(gè)不同元素中取出加個(gè)元素的
排列數(shù),用符號(hào)4:表示.
〃I
(2)排列數(shù)的公式:〃(〃一1)(〃-2)???(?-m+1)=----:——.
特例:當(dāng)冽=〃時(shí),4M=〃!=〃(〃一1)(〃—2)…3?2?1;規(guī)定0!=1.
1
(3)排列數(shù)的性質(zhì):①普="父二;②4"=‘一4"”=’^《;③4"=桎3
n-mn-m
(4)解排列應(yīng)用題的基本思路:
通過(guò)審題,找出問(wèn)題中的元素是什么,是否與順序有關(guān),有無(wú)特殊限制條件(特殊位置,特殊元素).
2.組合問(wèn)題
(1)定義:從"個(gè)不同元素中取出機(jī)(小W")個(gè)元素并成一組,叫做從〃個(gè)不同元素中取出加個(gè)元素的一個(gè)
組合;從〃個(gè)不同元素中取出加(加(〃)個(gè)元素的所有組合的個(gè)數(shù),叫做從〃個(gè)不同元素中取出機(jī)個(gè)元素的組
合數(shù),用符號(hào)表示.
(2)組合數(shù)公式及其推導(dǎo),求從〃個(gè)不同元素中取出加個(gè)元素的排列數(shù)4”,可以按以下兩步來(lái)考慮:
第一步,先求出從這〃個(gè)不同元素中取出加個(gè)元素的組合數(shù)C:”;
第二步,求每一個(gè)組合中加個(gè)元素的全排列數(shù)4”;
根據(jù)分步計(jì)數(shù)原理,得到M=c:?黑;因此c;=且="("一1)(〃-2)…(〃-加+1).
M7"!
〃I
這里〃,me7V,且冽(〃,這個(gè)公式叫做組合數(shù)公式.因?yàn)?;=/、,
+\n-my.
Y>I
所以組合數(shù)公式還可表示為:C;=,、.特例c:=c;=i.
注釋:組合數(shù)公式的推導(dǎo)方法是一種重要的解題方法!在以后學(xué)習(xí)排列組合的混合問(wèn)題時(shí),一般都是
按先取后排(先組合后排列)的順序解決問(wèn)題.
(3)組合數(shù)的主要性質(zhì):①c:=c7";②G:+CR=C禽.
題型一排列數(shù)的計(jì)算
【例1】A\C:=()
A.56B.32C.50D.48
【例2】已知3A;=4A],則x等于()
A.6B.13C.6或13D.12
【例3】【多選】下列等式中成立的是()
A.A:=(〃一2)A:
B.n
Yl
C."=A:D.-A:L=A:
n-m
題型二組合數(shù)的計(jì)算
【例1】已知喏=C:尸,則X可能取值為()
A.4B.5C.6或7D.5或7
ii7
【例2】已知E-奇=行所,則5+5+1+禺+2+/+3+£片的值為_(kāi)_____(用數(shù)字作答)?
C/公1ULZ7
題型三捆綁法(相鄰問(wèn)題,用捆綁法,注意內(nèi)部存在一定的順序)
[例1]4名男生2名女生排成一排,要求兩名女生排在一起的排法總數(shù)為()
A.48B.96C.120D.240
【例2】(2022?新高考II)甲、乙、丙、丁、戊5名同學(xué)站成一排參加文藝匯演,若甲不站在兩端,丙和
丁相鄰,則不同的排列方式共有()
A.12種B.24種C.36種D.48種
題型四插空法(不相鄰問(wèn)題用插空法,先排列不受限的事物,再插孔不相鄰的事物)
【例1】五聲音階(漢族古代音律)是按五度的相生順序,從宮音開(kāi)始到羽音,依次為宮,商,角,徵,羽.若
將這五個(gè)音階排成一列,形成一個(gè)音序,且要求宮、羽兩音節(jié)不相鄰,可排成不同的音序的種數(shù)為()
A.12種B.48種C.72種D.120種
【例2】高三(一)班學(xué)生要安排畢業(yè)晚會(huì)的4個(gè)音樂(lè)節(jié)目,2個(gè)舞蹈節(jié)目和1個(gè)曲藝節(jié)目的演出順序,要
求2個(gè)舞蹈節(jié)目不連排,則共有種不同的排法.
題型五特殊元素(位置)法(限制條件下,優(yōu)先考慮并滿足有限制的事物,然后再考慮不受限的事物)
【例1】甲乙丙丁4名同學(xué)站成一排拍照,若甲不站在兩端,不同排列方式有()
A.6種B.12種C.36種D.48種
【例2】從6名短跑運(yùn)動(dòng)員中選出4人參加4x100m接力賽,甲不能跑第一棒和第四棒,問(wèn)共有種參
賽方案.
【例3】(2023?乙卷)甲乙兩位同學(xué)從6種課外讀物中各自選讀2種,則這兩人選讀的課外讀物中恰有1
種相同的選法共有()
A.30種B.60種C.120種D.240種
【例4】某校準(zhǔn)備下一周舉辦運(yùn)動(dòng)會(huì),甲、乙、丙、丁4位同學(xué)報(bào)名參加48,C,。這4個(gè)項(xiàng)目的比賽,每
人只報(bào)名1個(gè)項(xiàng)目,任意兩人不報(bào)同一個(gè)項(xiàng)目,甲不報(bào)名參加A項(xiàng)目,則不同的報(bào)名方法種數(shù)有()
A.18B.21C.23D.72
題型六間接法(正難則反)
[例1]某小學(xué)從2位語(yǔ)文教師,4位數(shù)學(xué)教師中安排3人到西部三個(gè)省支教,每個(gè)省各1人,且至少有1
位語(yǔ)文教師入選,則不同安排方法有()種.
A.16B.20C.96D.120
【例2】從甲、乙等5人中任選3人參加三個(gè)不同項(xiàng)目的比賽,要求每個(gè)項(xiàng)目都有人參加,則甲、乙中至少有
1人入選的不同參賽方案共有種.
題型七重排問(wèn)題求塞策略(解決可重復(fù)問(wèn)題)
【例1】有5名學(xué)生報(bào)名參加3項(xiàng)體育比賽,每人限報(bào)一項(xiàng),則不同的報(bào)名方法的種數(shù)為()
A.243B.125C.60D.120
【例2】甲、乙、丙、丁4名同學(xué)爭(zhēng)奪數(shù)學(xué)、物理、化學(xué)3門學(xué)科知識(shí)競(jìng)賽的冠軍,且每門學(xué)科只有1名冠
軍產(chǎn)生,有種不同的冠軍獲得情況.
題型八組合問(wèn)題
【例1】(2023?新高考II)某學(xué)校為了了解學(xué)生參加體育運(yùn)動(dòng)的情況,用比例分配的分層隨機(jī)抽樣方法作
抽樣調(diào)查,擬從初中部和高中部?jī)蓪庸渤槿?0名學(xué)生,已知該校初中部和高中部分別有400名和200名學(xué)
生,則不同的抽樣結(jié)果共有()
A.種B.黑種
c.C嘉C禽種D.CMC北種
[例2](2023?新高考I)某學(xué)校開(kāi)設(shè)了4門體育類選修課和4門藝術(shù)類選修課,學(xué)生需從這8門課中選
修2門或3門課,并且每類選修課至少選修1門,則不同的選課方案共有種(用數(shù)字作答).
[例3](2020?上海)從6個(gè)人挑選4個(gè)人去值班,每人值班一天,第一天安排1個(gè)人,第二天安排1個(gè)
人,第三天安排2個(gè)人,則共有種安排情況.
題型九分組分配問(wèn)題
1.平均分組問(wèn)題
【例1】導(dǎo)師制是高中新的教學(xué)探索制度,班級(jí)科任教師作為導(dǎo)師既面向全體授課對(duì)象,又對(duì)指定的若干學(xué)
生的個(gè)性、人格發(fā)展和全面素質(zhì)提高負(fù)責(zé).已知有3位科任教師負(fù)責(zé)某學(xué)習(xí)小組的6名同學(xué),每2名同學(xué)
由1位科任教師負(fù)責(zé),則不同的分配方法的種數(shù)為()
A.90B.15C.60D.180
【例2】為提升教育教學(xué)質(zhì)量,促進(jìn)各分校區(qū)發(fā)展,西南大學(xué)附屬中學(xué)開(kāi)展本部一分校區(qū)聯(lián)合教研.現(xiàn)計(jì)劃
從本部派出7男2女共9名老師到A、8、C三個(gè)分校區(qū)開(kāi)展教研,每個(gè)校區(qū)三人,則有()種安排方
案.
A.1050B.1680C.2940D.3360
2.不平均分組問(wèn)題
【例1】現(xiàn)有高校進(jìn)入高中校園組織招生宣傳,4名男生、3名女生去參加A,B兩所高校的志愿填報(bào)咨詢會(huì),
每個(gè)學(xué)生只能去其中的一所學(xué)校,且要求每所學(xué)校都既有男生又有女生參加,則不同的安排方法數(shù)是()
A.42B.60C.84D.120
【例2】教育扶貧是我國(guó)重點(diǎn)扶貧項(xiàng)目,為了縮小教育資源的差距,國(guó)家鼓勵(lì)教師去鄉(xiāng)村支教,某校選派了
5名教師到N、B,C三個(gè)鄉(xiāng)村學(xué)校去支教,每個(gè)學(xué)校至少去1人,每名教師只能去一個(gè)學(xué)校,不同的選派
方法數(shù)有()種
A.25B.60C.90D.150
題型十排列組合混合問(wèn)題先選后排策略
【例1】(2020?新課標(biāo)H)4名同學(xué)到3個(gè)小區(qū)參加垃圾分類宣傳活動(dòng),每名同學(xué)只去1個(gè)小區(qū),每個(gè)小
區(qū)至少安排1名同學(xué),則不同的安排方法共有種.
[例2]將6名實(shí)習(xí)教師分配到5所學(xué)校進(jìn)行培訓(xùn),每名實(shí)習(xí)教師只能分配到1個(gè)學(xué)校,每個(gè)學(xué)校至少分配
1名實(shí)習(xí)教師,則不同的分配方案共有()
A.600種B.900種C.1800種D.3600種
【例3】為了落實(shí)立德樹(shù)人的根本任務(wù),踐行五育并舉,某校開(kāi)設(shè)4員C三門德育校本課程,現(xiàn)有甲、乙、
丙、丁四位同學(xué)參加校本課程的學(xué)習(xí),每位同學(xué)僅報(bào)一門,每門至少有一位同學(xué)參加,則不同的報(bào)名方法有
()
A.72種B.60種C.54種D.36種
題型十一定序問(wèn)題倍縮法(排列中涉及到定序的問(wèn)題,則用除法,出去多著全排列中涉及到順序的問(wèn)題)
【例1】某4位同學(xué)排成一排準(zhǔn)備照相時(shí),又來(lái)了2位同學(xué)要加入,如果保持原來(lái)4位同學(xué)的相對(duì)順序不變,
則不同的加入方法種數(shù)為()
A.10B.20C.24D.30
【例2】花燈,又名“彩燈”“燈籠”,是中國(guó)傳統(tǒng)農(nóng)業(yè)時(shí)代的文化產(chǎn)物,兼具生活功能與藝術(shù)特色.如圖,現(xiàn)有
懸掛著的6盞不同的花燈需要取下,每次取1盞,則不同取法總數(shù)為
題型十二隔板法(相同元素的分配問(wèn)題,用插板法進(jìn)行求解)
【例1】10個(gè)三好學(xué)生名額分到7個(gè)班級(jí),每個(gè)班級(jí)至少一個(gè)名額,有()種不同分配方案?
A.9B.36C.84D.120
題型十三合理分類與分步策略(多面手問(wèn)題)
[例1]我校去年11月份,高二年級(jí)有10人參加了赴日本交流訪問(wèn)團(tuán),其中3人只會(huì)唱歌,2人只會(huì)跳舞,
其余5人既能唱歌又能跳舞.現(xiàn)要從中選6人上臺(tái)表演,3人唱歌,3人跳舞,有()種不同的選法.
A.675B.575C.512D.545
題型十四涂色問(wèn)題(先分配好顏色,再進(jìn)行涂色,最后加法合并到一起)
求解涂色(種植)問(wèn)題一般是直接利用兩個(gè)計(jì)數(shù)原理求解,常用方法有:
(1)按區(qū)域的不同以區(qū)域?yàn)橹鞣植接?jì)數(shù),用分步乘法計(jì)數(shù)原理分析;
(2)以顏色(種植作物)為主分類討論,適用于“區(qū)域、點(diǎn)、線段”問(wèn)題,用分類加法計(jì)數(shù)原理分析;
(3)對(duì)于涂色(立方體)問(wèn)題將空間問(wèn)題平面化,轉(zhuǎn)化為平面區(qū)域涂色問(wèn)題
【例1】(2010?天津)如圖,用四種不同顏色給圖中的/,B,C,D,E,尸六個(gè)點(diǎn)涂色,要求每個(gè)點(diǎn)
涂一種顏色,且圖中每條線段的兩個(gè)端點(diǎn)涂不同顏色,則不同的涂色方法有()
A.288種B.264種C.240種D.168種
【例2】(2003?全國(guó))如圖,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏
色.現(xiàn)有4種顏色可供選擇,則不同的著色方法共有種.(以數(shù)字作答)
題型十五標(biāo)號(hào)排位問(wèn)題(不配對(duì)問(wèn)題)
【例1】將數(shù)字1,2,3,4填入標(biāo)號(hào)為1,2,3,4的四個(gè)方格里,每格填一個(gè)數(shù),則每個(gè)方格的標(biāo)號(hào)與所
填數(shù)字均不相同的填法有()
A、6種B、9種C、11種D、23種
【例2】(2024?新高考II)在如圖的4x4方格表中選4個(gè)方格,要求每行和每列均恰有一個(gè)方格被選中,
則共有種選法,在所有符合上述要求的選法中,選中方格的4個(gè)數(shù)之和的最大值是
11213140
12223342
13223343
15243444
題型十六環(huán)排問(wèn)題線排策略
[例I]如圖,某手鏈由10顆較小的珠子(每顆珠子相同)和11顆較大的珠子(每顆珠子均不相同)串成,若10
顆小珠子必須相鄰,大珠子的位置任意,則該手鏈不同的串法有()
OA.4;種B.B■種C.4;種D.9種
題型十七構(gòu)造模型策略
【例1】某排共有10個(gè)座位,安排4人就坐.若每人左右兩邊都有空位,則不同的坐法有
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 3D打印義肢的仿生控制與感知反饋
- 2025年佛山市均安鎮(zhèn)專職消防隊(duì)招聘消防員5人備考題庫(kù)及1套參考答案詳解
- 2025年百色市樂(lè)業(yè)縣專業(yè)森林消防救援隊(duì)伍招聘?jìng)淇碱}庫(kù)參考答案詳解
- 簡(jiǎn)約手繪插畫(huà)風(fēng)畢業(yè)晚會(huì)典禮
- 2025年關(guān)于屏山縣興紡建設(shè)發(fā)展有限公司及其下屬子公司第六次公開(kāi)招聘5名工作員的備考題庫(kù)及一套參考答案詳解
- 數(shù)字化環(huán)境下小學(xué)階段學(xué)生評(píng)價(jià)標(biāo)準(zhǔn)動(dòng)態(tài)更新策略探究教學(xué)研究課題報(bào)告
- 重慶數(shù)字資源集團(tuán)有限公司“數(shù)智新雁”人工智能菁英招募20人計(jì)劃備考題庫(kù)完整答案詳解
- 2025年新鄉(xiāng)有崗備考題庫(kù)河南省氣象部門公開(kāi)招聘應(yīng)屆高校畢業(yè)生14人備考題庫(kù)(第2號(hào))含答案詳解
- 2025年咸寧市婦幼保健院人才引進(jìn)備考題庫(kù)及一套完整答案詳解
- 浙商銀行福州分行2025年招聘?jìng)淇碱}庫(kù)及參考答案詳解
- 【新】國(guó)開(kāi)2024年秋《經(jīng)濟(jì)法學(xué)》1234形考任務(wù)答案
- 2026屆甘肅省蘭州市一中生物高一第一學(xué)期期末檢測(cè)模擬試題含解析
- 托福真題試卷含答案(2025年)
- (2025)70周歲以上老年人換長(zhǎng)久駕照三力測(cè)試題庫(kù)(含參考答案)
- 2025遼寧葫蘆島市總工會(huì)招聘工會(huì)社會(huì)工作者5人筆試考試參考題庫(kù)及答案解析
- 2026年湖南汽車工程職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)及參考答案詳解
- 農(nóng)光互補(bǔ)項(xiàng)目可行性研究報(bào)告
- 印刷消防應(yīng)急預(yù)案(3篇)
- 高校桶裝水合同范本
- 一年級(jí)語(yǔ)文上冊(cè)第六單元復(fù)習(xí)課件
- 黨的二十屆四中全會(huì)精神丨線上知識(shí)有獎(jiǎng)競(jìng)答題庫(kù)
評(píng)論
0/150
提交評(píng)論