初一數(shù)學(xué)下冊期末壓軸題模擬試卷含解析_第1頁
初一數(shù)學(xué)下冊期末壓軸題模擬試卷含解析_第2頁
初一數(shù)學(xué)下冊期末壓軸題模擬試卷含解析_第3頁
初一數(shù)學(xué)下冊期末壓軸題模擬試卷含解析_第4頁
初一數(shù)學(xué)下冊期末壓軸題模擬試卷含解析_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

一、解答題1.如圖1,在平面直角坐標(biāo)系中,,且滿足,過作軸于.(1)求的面積.(2)若過作交軸于,且分別平分,如圖2,求的度數(shù).(3)在軸上存在點(diǎn)使得和的面積相等,請直接寫出點(diǎn)坐標(biāo).2.如圖,已知直線射線CD,.P是射線EB上一動點(diǎn),過點(diǎn)P作PQEC交射線CD于點(diǎn)Q,連接CP.作,交直線AB于點(diǎn)F,CG平分.(1)若點(diǎn)P,F(xiàn),G都在點(diǎn)E的右側(cè),求的度數(shù);(2)若點(diǎn)P,F(xiàn),G都在點(diǎn)E的右側(cè),,求的度數(shù);(3)在點(diǎn)P的運(yùn)動過程中,是否存在這樣的情形,使?若存在,求出的度數(shù);若不存在,請說明理由.3.汛期即將來臨,防汛指揮部在某水域一危險地帶兩岸各安置了一探照燈,便于夜間查看河水及兩岸河堤的情況.如圖1,燈射出的光束自順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射出的光束自順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈射出的光束轉(zhuǎn)動的速度是/秒,燈射出的光束轉(zhuǎn)動的速度是/秒,且、滿足.假定這一帶水域兩岸河堤是平行的,即,且.(1)求、的值;(2)如圖2,兩燈同時轉(zhuǎn)動,在燈射出的光束到達(dá)之前,若兩燈射出的光束交于點(diǎn),過作交于點(diǎn),若,求的度數(shù);(3)若燈射線先轉(zhuǎn)動30秒,燈射出的光束才開始轉(zhuǎn)動,在燈射出的光束到達(dá)之前,燈轉(zhuǎn)動幾秒,兩燈的光束互相平行?4.綜合與探究(問題情境)王老師組織同學(xué)們開展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(1)如圖1,,點(diǎn)、分別為直線、上的一點(diǎn),點(diǎn)為平行線間一點(diǎn),請直接寫出、和之間的數(shù)量關(guān)系;(問題遷移)(2)如圖2,射線與射線交于點(diǎn),直線,直線分別交、于點(diǎn)、,直線分別交、于點(diǎn)、,點(diǎn)在射線上運(yùn)動,①當(dāng)點(diǎn)在、(不與、重合)兩點(diǎn)之間運(yùn)動時,設(shè),.則,,之間有何數(shù)量關(guān)系?請說明理由.②若點(diǎn)不在線段上運(yùn)動時(點(diǎn)與點(diǎn)、、三點(diǎn)都不重合),請你畫出滿足條件的所有圖形并直接寫出,,之間的數(shù)量關(guān)系.5.已知:直線AB∥CD,直線MN分別交AB、CD于點(diǎn)E、F,作射線EG平分∠BEF交CD于G,過點(diǎn)F作FH⊥MN交EG于H.(1)當(dāng)點(diǎn)H在線段EG上時,如圖1①當(dāng)∠BEG=時,則∠HFG=.②猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.(2)當(dāng)點(diǎn)H在線段EG的延長線上時,請先在圖2中補(bǔ)全圖形,猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.6.已知直線AB//CD,點(diǎn)P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當(dāng)射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.7.閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,于是小明用來表示的小數(shù)部分,事實(shí)上,小明的表示方法是有道理的,因?yàn)榈恼麛?shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是的小數(shù)部分,又例如:∵,即,∴的整數(shù)部分為2,小數(shù)部分為。請解答(1)的整數(shù)部分是______,小數(shù)部分是_______。(2)如果的小數(shù)部分為a,的整數(shù)部分為b,求的值。(3)已知x是的整數(shù)部分,y是其小數(shù)部分,直接寫出的值.8.據(jù)說,我國著名數(shù)學(xué)家華羅庚在一次訪問途中,看到飛機(jī)鄰座的乘客閱讀的雜志上有一道智力題:一個數(shù)32768,它是一個正數(shù)的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準(zhǔn)確計算出的嗎?請按照下面的問題試一試:(1)由,因?yàn)?,請確定是______位數(shù);(2)由32768的個位上的數(shù)是8,請確定的個位上的數(shù)是________,劃去32768后面的三位數(shù)768得到32,因?yàn)?,請確定的十位上的數(shù)是_____________(3)已知13824和分別是兩個數(shù)的立方,仿照上面的計算過程,請計算:=____;9.對數(shù)運(yùn)算是高中常用的一種重要運(yùn)算,它的定義為:如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作:x=logaN,例如:32=9,則log39=2,其中a=10的對數(shù)叫做常用對數(shù),此時log10N可記為lgN.當(dāng)a>0,且a≠1,M>0,N>0時,loga(M?N)=logaM+logaN.(I)解方程:logx4=2;(Ⅱ)log28=(Ⅲ)計算:(lg2)2+lg2?1g5+1g5﹣2018=(直接寫答案)10.對于有理數(shù)、,定義了一種新運(yùn)算“※”為:如:,.(1)計算:①______;②______;(2)若是關(guān)于的一元一次方程,且方程的解為,求的值;(3)若,,且,求的值.11.閱讀型綜合題對于實(shí)數(shù)我們定義一種新運(yùn)算(其中均為非零常數(shù)),等式右邊是通常的四則運(yùn)算,由這種運(yùn)算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實(shí)數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的叫做正格線性數(shù)的正格數(shù)對.(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.12.閱讀理解:一個多位數(shù),如果根據(jù)它的位數(shù),可以從左到右分成左、中、右三個數(shù)位相同的整數(shù),其中a代表這個整數(shù)分出來的左邊數(shù),b代表的這個整數(shù)分出來的中間數(shù),c代表這個整數(shù)分出來的右邊數(shù),其中a,b,c數(shù)位相同,若b﹣a=c﹣b,我們稱這個多位數(shù)為等差數(shù).例如:357分成了三個數(shù)3,5,7,并且滿足:5﹣3=7﹣5;413223分成三個數(shù)41,32,23,并且滿足:32﹣41=23﹣32;所以:357和413223都是等差數(shù).(1)判斷:148等差數(shù),514335等差數(shù);(用“是”或“不是”填空)(2)若一個三位數(shù)是等差數(shù),試說明它一定能被3整除;(3)若一個三位數(shù)T是等差數(shù),且T是24的倍數(shù),求該等差數(shù)T.13.如圖,已知點(diǎn),點(diǎn),且,滿足關(guān)系式.(1)求點(diǎn)、的坐標(biāo);(2)如圖1,點(diǎn)是線段上的動點(diǎn),軸于點(diǎn),軸于點(diǎn),軸于點(diǎn),連接、.試探究,之間的數(shù)量關(guān)系;(3)如圖2,線段以每秒2個單位長度的速度向左水平移動到線段.若線段交軸于點(diǎn),當(dāng)三角形和三角形的面積相等時,求移動時間和點(diǎn)的坐標(biāo).14.如圖,已知直線,點(diǎn)在直線上,點(diǎn)在直線上,點(diǎn)在點(diǎn)的右側(cè),平分平分,直線交于點(diǎn).(1)若時,則___________;(2)試求出的度數(shù)(用含的代數(shù)式表示);(3)將線段向右平行移動,其他條件不變,請畫出相應(yīng)圖形,并直接寫出的度數(shù).(用含的代數(shù)式表示)15.在平面直角坐標(biāo)系中,已知線段,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖1所示.(1)平移線段到線段,使點(diǎn)的對應(yīng)點(diǎn)為,點(diǎn)的對應(yīng)點(diǎn)為,若點(diǎn)的坐標(biāo)為,求點(diǎn)的坐標(biāo);(2)平移線段到線段,使點(diǎn)在軸的正半軸上,點(diǎn)在第二象限內(nèi)(與對應(yīng),與對應(yīng)),連接如圖2所示.若表示△BCD的面積),求點(diǎn)、的坐標(biāo);(3)在(2)的條件下,在軸上是否存在一點(diǎn),使表示△PCD的面積)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.16.已知關(guān)于x、y的二元一次方程(1)若方程組的解x、y滿足,求a的取值范圍;(2)求代數(shù)式的值.17.如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn),其中滿足,D為直線AB與軸的交點(diǎn),C為線段AB上一點(diǎn),其縱坐標(biāo)為.(1)求的值;(2)當(dāng)為何值時,和面積的相等;(3)若點(diǎn)C坐標(biāo)為(-2,1),點(diǎn)M(m,-3)在第三象限內(nèi),滿足,求m的取值范圍.(注:表示的面積)18.如圖1,已知,點(diǎn)A(1,a),AH⊥x軸,垂足為H,將線段AO平移至線段BC,點(diǎn)B(b,0),其中點(diǎn)A與點(diǎn)B對應(yīng),點(diǎn)O與點(diǎn)C對應(yīng),a、b滿足.(1)填空:①直接寫出A、B、C三點(diǎn)的坐標(biāo)A(________)、B(________)、C(________);②直接寫出三角形AOH的面積________.(2)如圖1,若點(diǎn)D(m,n)在線段OA上,證明:4m=n.(3)如圖2,連OC,動點(diǎn)P從點(diǎn)B開始在x軸上以每秒2個單位的速度向左運(yùn)動,同時點(diǎn)Q從點(diǎn)O開始在y軸上以每秒1個單位的速度向下運(yùn)動.若經(jīng)過t秒,三角形AOP與三角形COQ的面積相等,試求t的值及點(diǎn)P的坐標(biāo).19.兩個兩位數(shù)的和是68,在較大的兩位數(shù)的右邊接著寫較小的兩位數(shù),得到一個四位數(shù);在較大的兩位數(shù)的左邊寫上較小的兩位數(shù),也得到一個四位數(shù).已知前一個四位數(shù)比后一個四位數(shù)大990.若設(shè)較大的兩位數(shù)為x,較小的兩位數(shù)為y,回答下列問題:(1)可得到下列哪一個方程組?A.B.C.D.(2)解所確定的方程組,求這兩個兩位數(shù).20.如圖,學(xué)校印刷廠與A,D兩地有公路、鐵路相連,從A地購進(jìn)一批每噸8000元的白紙,制成每噸10000元的作業(yè)本運(yùn)到D地批發(fā),已知公路運(yùn)價1.5元/(t?km),鐵路運(yùn)價1.2元/(t?km).這兩次運(yùn)輸支出公路運(yùn)費(fèi)4200元,鐵路運(yùn)費(fèi)26280元.(1)白紙和作業(yè)本各多少噸?(2)這批作業(yè)本的銷售款比白紙的購進(jìn)款與運(yùn)輸費(fèi)的和多多少元?21.平面直角坐標(biāo)系中,A(a,0),B(0,b),a,b滿足,將線段AB平移得到CD,A,B的對應(yīng)點(diǎn)分別為C,D,其中點(diǎn)C在y軸負(fù)半軸上.(1)求A,B兩點(diǎn)的坐標(biāo);(2)如圖1,連AD交BC于點(diǎn)E,若點(diǎn)E在y軸正半軸上,求的值;(3)如圖2,點(diǎn)F,G分別在CD,BD的延長線上,連結(jié)FG,∠BAC的角平分線與∠DFG的角平分線交于點(diǎn)H,求∠G與∠H之間的數(shù)量關(guān)系.22.閱讀下列文字,請仔細(xì)體會其中的數(shù)學(xué)思想.(1)解方程組,我們利用加減消元法,很快可以求得此方程組的解為;(2)如何解方程組呢?我們可以把m+5,n+3看成一個整體,設(shè)m+5=x,n+3=y(tǒng),很快可以求出原方程組的解為;(3)由此請你解決下列問題:若關(guān)于m,n的方程組與有相同的解,求a、b的值.23.學(xué)校計劃為“我和我的祖國”演講比賽購買獎品.已知購買3個A獎品和2個B獎品共需120元;購買5個A獎品和4個B獎品共需210元.(1)求A,B兩種獎品的單價;(2)學(xué)校準(zhǔn)備購買A,B兩種獎品共30個,且A獎品的數(shù)量不少于B獎品數(shù)量的.請?jiān)O(shè)計出最省錢的購買方案,并說明理由.24.如圖,在平面直角坐標(biāo)系中,已知,點(diǎn),,,,,滿足,(1)直接寫出點(diǎn),,的坐標(biāo)及的面積;(2)如圖2,過點(diǎn)作直線,已知是上的一點(diǎn),且,求的取值范圍;(3)如圖3,是線段上一點(diǎn),①求,之間的關(guān)系;②點(diǎn)為點(diǎn)關(guān)于軸的對稱點(diǎn),已知,求點(diǎn)的坐標(biāo).25.若任意一個代數(shù)式,在給定的范圍內(nèi)求得的最大值和最小值恰好也在該范圍內(nèi),則稱這個代數(shù)式是這個范圍的“湘一代數(shù)式”.例如:關(guān)于x的代數(shù)式,當(dāng)1x1時,代數(shù)式在x1時有最大值,最大值為1;在x0時有最小值,最小值為0,此時最值1,0均在1x1這個范圍內(nèi),則稱代數(shù)式是1x1的“湘一代數(shù)式”.(1)若關(guān)于的代數(shù)式,當(dāng)時,取得的最大值為,最小值為,所以代數(shù)式(填“是”或“不是”)的“湘一代數(shù)式”.(2)若關(guān)于的代數(shù)式是的“湘一代數(shù)式”,求a的最大值與最小值.(3)若關(guān)于的代數(shù)式是的“湘一代數(shù)式”,求m的取值范圍.26.某數(shù)碼專營店銷售A,B兩種品牌智能手機(jī),這兩種手機(jī)的進(jìn)價和售價如表所示:AB進(jìn)價(元/部)33003700售價(元/部)38004300(1)該店銷售記錄顯示,三月份銷售A、B兩種手機(jī)共34部,且銷售A種手機(jī)的利潤恰好是銷售B種手機(jī)利潤的2倍,求該店三月份售出A種手機(jī)和B種手機(jī)各多少部?(2)根據(jù)市場調(diào)研,該店四月份計劃購進(jìn)這兩種手機(jī)共40部,要求購進(jìn)B種手機(jī)數(shù)不低于A種手機(jī)數(shù)的,用于購買這兩種手機(jī)的資金低于140000元,請通過計算設(shè)計所有可能的進(jìn)貨方案.27.如圖,正方形ABCD的邊長是2厘米,E為CD的中點(diǎn),Q為正方形ABCD邊上的一個動點(diǎn),動點(diǎn)Q以每秒1厘米的速度從A出發(fā)沿運(yùn)動,最終到達(dá)點(diǎn)D,若點(diǎn)Q運(yùn)動時間為秒.(1)當(dāng)時,平方厘米;當(dāng)時,平方厘米;(2)在點(diǎn)Q的運(yùn)動路線上,當(dāng)點(diǎn)Q與點(diǎn)E相距的路程不超過厘米時,求的取值范圍;(3)若的面積為平方厘米,直接寫出值.28.小語爸爸開了一家茶葉專賣店,包裝設(shè)計專業(yè)畢業(yè)的小語為爸爸設(shè)計了一款紙質(zhì)長方體茶葉包包裝盒(紙片厚度不計).如圖,陰影部分是裁剪掉的部分,沿圖中實(shí)線折疊做成的長方體紙盒的上下底面是正方形,有三處長方形形狀的“接口”用來折疊后粘貼或封蓋.(1)若小語用長,寬的長方形紙片,恰好能做成一個符合要求的包裝盒,盒高是盒底邊長的倍,三處“接口”的寬度相等.則該茶葉盒的容積是多少?(2)小語爸爸的茶葉專賣店以每盒元購進(jìn)一批茶葉,按進(jìn)價增加作為售價,第一個月由于包裝粗糙,只售出不到一半但超過三分之一的量;第二個月采用了小語的包裝后,馬上售完了余下的茶葉,但每盒成本增加了元,售價仍不變,已知在整個買賣過程中共盈利元,求這批茶葉共進(jìn)了多少盒?29.在平面直角坐標(biāo)系中,點(diǎn),,的坐標(biāo)分別為,,,且,滿足方程為二元一次方程.(1)求,的坐標(biāo).(2)若點(diǎn)為軸正半軸上的一個動點(diǎn).①如圖1,當(dāng)時,與的平分線交于點(diǎn),求的度數(shù);②如圖2,連接,交軸于點(diǎn).若成立.設(shè)動點(diǎn)的坐標(biāo)為,求的取值范圍.30.如圖,已知點(diǎn),,.(1)求的面積;(2)點(diǎn)是在坐標(biāo)軸上異于點(diǎn)的一點(diǎn),且的面積等于的面積,求滿足條件的點(diǎn)的坐標(biāo);(3)若點(diǎn)的坐標(biāo)為,且,連接交于點(diǎn),在軸上有一點(diǎn),使的面積等于的面積,請直接寫出點(diǎn)的坐標(biāo)__________(用含的式子表示).【參考答案】***試卷處理標(biāo)記,請不要刪除一、解答題1.(1)4;(2);(2)或.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)易得,,然后根據(jù)三角形面積公式計算;(2)過作,根據(jù)平行線性質(zhì)得,且,,所以;然后把代入計算即可;(3)分類討論:設(shè),當(dāng)在軸正半軸上時,過作軸,軸,軸,利用可得到關(guān)于的方程,再解方程求出;當(dāng)在軸負(fù)半軸上時,運(yùn)用同樣方法可計算出.【詳解】解:(1),,,,,,,,的面積;(2)解:軸,,,又∵,∴,過作,如圖①,,,,,分別平分,,即:,,;(3)或.解:①當(dāng)在軸正半軸上時,如圖②,設(shè),過作軸,軸,軸,,,解得,②當(dāng)在軸負(fù)半軸上時,如圖③,解得,綜上所述:或.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì):兩直線平行,內(nèi)錯角相等.也考查了非負(fù)數(shù)的性質(zhì)、坐標(biāo)與圖形性質(zhì)以及三角形面積公式.構(gòu)造矩形求三角形面積是解題關(guān)鍵.2.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);(2)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=25°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)設(shè)∠EGC=4x,∠EFC=3x,則∠GCF=4x-3x=x,分兩種情況討論:①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時,②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時,依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)設(shè)∠EGC=4x,∠EFC=3x,則∠GCF=∠FCD=4x-3x=x,①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時,則∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時,則∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯角相等.3.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根據(jù),用含t的式子表示出,根據(jù)(2)中給出的條件得出方程式,求出t的值,進(jìn)而求出的度數(shù);(3)根據(jù)燈B的要求,t<150,在這個時間段內(nèi)A可以轉(zhuǎn)3次,分情況討論.【詳解】解:(1).又,.,;(2)設(shè)燈轉(zhuǎn)動時間為秒,如圖,作,而,,,,,,(3)設(shè)燈轉(zhuǎn)動秒,兩燈的光束互相平行.依題意得①當(dāng)時,兩河岸平行,所以兩光線平行,所以所以,即:,解得;②當(dāng)時,兩光束平行,所以兩河岸平行,所以所以,,解得;③當(dāng)時,圖大概如①所示,解得(不合題意)綜上所述,當(dāng)秒或82.5秒時,兩燈的光束互相平行.【點(diǎn)睛】這道題考察的是平行線的性質(zhì)和一元一次方程的應(yīng)用.根據(jù)平行線的性質(zhì)找到對應(yīng)角列出方程是解題的關(guān)鍵.4.(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質(zhì),即可得到答案;(2)①過作交于,由平行線的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對點(diǎn)P進(jìn)行分類討論:當(dāng)點(diǎn)在延長線時;當(dāng)在之間時;與①同理,利用平行線的性質(zhì),即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過作交于,∵,∴,∴,,∴;②當(dāng)點(diǎn)在延長線時,如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當(dāng)在之間時,如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點(diǎn)睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練掌握兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行內(nèi)錯角相等,從而得到角的關(guān)系.5.(1)①18°;②2∠BEG+∠HFG=90°,證明見解析;(2)2∠BEG-∠HFG=90°證明見解析部【分析】(1)①證明2∠BEG+∠HFG=90°,可得結(jié)論.②利用平行線的性質(zhì)證明即可.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.利用平行線的性質(zhì)證明即可.【詳解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案為:18°.②結(jié)論:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.6.(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進(jìn)而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時,②當(dāng)15<t≤30時,③當(dāng)30<t<45時,根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運(yùn)用方程思想解決幾何問題.7.(1)3;﹣3;(2)4;(3)x﹣y=7﹣.【分析】(1)由3<<4可得答案;(2)由2<<3知a=﹣2,由6<<7知b=6,據(jù)此求解可得;(3)由2<<3知5<3+<6,據(jù)此得出x、y的值代入計算可得.【詳解】(1)∵3<<4,∴的整數(shù)部分是3,小數(shù)部分是﹣3;故答案為3;﹣3.(2)∵2<<3,∴a=﹣2,∵6<<7,∴b=6,∴a+b﹣=﹣2+6﹣=4.(3)∵2<<3,∴5<3+<6,∴3+的整數(shù)部分為x=5,小數(shù)部分為y=3+﹣5=﹣2.則x﹣y=5﹣(﹣2)=5﹣+2=7﹣.【點(diǎn)睛】本題考查了估算無理數(shù)的大小,解決本題的關(guān)鍵是熟記估算無理數(shù)的大?。?.(1)兩;(2)2,3;(3)24,-48.【分析】(1)根據(jù)題中所給的分析方法先求出這32768的立方根都是兩位數(shù);(2)繼續(xù)分析求出個位數(shù)和十位數(shù)即可;(3)利用(1)(2)中材料中的過程進(jìn)行分析可得結(jié)論.【詳解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10<<100,∴是兩位數(shù);故答案為:兩;(2)∵只有個位數(shù)是2的立方數(shù)是個位數(shù)是8,∴的個位上的數(shù)是2劃去32768后面的三位數(shù)768得到32,因?yàn)?3=27,43=64,∵27<32<64,∴30<<40.∴的十位上的數(shù)是3.故答案為:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是兩位數(shù);∵只有個位數(shù)是4的立方數(shù)是個位數(shù)是4,∴的個位上的數(shù)是4劃去13824后面的三位數(shù)824得到13,因?yàn)?3=8,33=27,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是兩位數(shù);∵只有個位數(shù)是8的立方數(shù)是個位數(shù)是2,∴的個位上的數(shù)是8,劃去110592后面的三位數(shù)592得到110,因?yàn)?3=64,53=125,∵64<110<125,∴40<<50.∴=-48;故答案為:24,-48.【點(diǎn)睛】此題考查立方根,解題關(guān)鍵在于理解一個數(shù)的立方的個位數(shù)就是這個數(shù)的個位數(shù)的立方的個位數(shù).9.(I)x=2;(Ⅱ)3;(Ⅲ)-2017.【分析】(I)根據(jù)對數(shù)的定義,得出x2=4,求解即可;(Ⅱ)根據(jù)對數(shù)的定義求解即;;(Ⅲ)根據(jù)loga(M?N)=logaM+logaN求解即可.【詳解】(I)解:∵logx4=2,∴x2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴l(xiāng)og28=3,故答案為3;(Ⅲ)解:(lg2)2+lg2?1g5+1g5﹣2018=lg2?(lg2+1g5)+1g5﹣2018=lg2+1g5﹣2018=1-2018=-2017故答案為-2017.【點(diǎn)睛】本題主要考查同底數(shù)冪的乘法,有理數(shù)的乘方,是一道關(guān)于新定義運(yùn)算的題目,解答本題的關(guān)鍵是理解給出的對數(shù)的定義.10.(1)①5;②;(2)1;(3)16.【分析】(1)根據(jù)題中定義代入即可得出;(2)根據(jù),討論3和的兩種大小關(guān)系,進(jìn)行計算;(3)先判定A、B的大小關(guān)系,再進(jìn)行求解.【詳解】(1)根據(jù)題意:∵,∴,∵,∴.(2)∵,∴,①若,則,解得,②若,則,解得(不符合題意),∴.(3)∵,∴,∴,得,∴.【點(diǎn)睛】本題考查了一種新運(yùn)算,讀懂題意掌握新運(yùn)算并能正確化簡是解題的關(guān)鍵.11.(1)5,3;(2)有正格數(shù)對,正格數(shù)對為【分析】(1)根據(jù)定義,直接代入求解即可;(2)將代入求出b的值,再將代入,表示出kx,再根據(jù)題干分析即可.【詳解】解:(1)∵∴5,3故答案為:5,3;(2)有正格數(shù)對.將代入,得出,,解得,,∴,則∴∵,為正整數(shù)且為整數(shù)∴,,,∴正格數(shù)對為:.【點(diǎn)睛】本題考查的知識點(diǎn)是實(shí)數(shù)的運(yùn)算,理解新定義是解此題的關(guān)鍵.12.(1)不是,是;(2)見解析;(3)432或456或840或864或888【分析】(1)根據(jù)等差數(shù)的定義判定即可;(2)設(shè)這個三位數(shù)是M,,根據(jù)等差數(shù)的定義可知,進(jìn)而得出即可.(3)根據(jù)等差數(shù)的定義以及24的倍數(shù)的數(shù)的特征可先求出a的值,再根據(jù)是8的倍數(shù)可確定c的值,又因?yàn)椋钥纱_定a、c為偶數(shù)時b才可取整數(shù)有意義,排除不符合條件的a、c值,再將符合條件的a、c代入求出b的值,即可求解.【詳解】解:(1)∵,∴148不是等差數(shù),∵,∴514335是等差數(shù);(2)設(shè)這個三位數(shù)是M,,∵,∴,∵,∴這個等差數(shù)是3的倍數(shù);(3)由(2)知,∵T是24的倍數(shù),∴是8的倍數(shù),∵2c是偶數(shù),∴只有當(dāng)35a也是偶數(shù)時才有可能是8的倍數(shù),∴或4或6或8,當(dāng)時,,此時若,則,若,則,若,則,大于70又是8的倍數(shù)的最小數(shù)是72,之后是80,88當(dāng)時不符合題意;當(dāng)時,,此時若,則,若,則,(144、152是8的倍數(shù)),當(dāng)時,,此時若,則,若,則,(216、244是8的倍數(shù)),當(dāng)時,,此時若,則,若,則,若,則,(280,288,296是8的倍數(shù)),∵,∴若a是偶數(shù),則c也是偶數(shù)時b才有意義,∴和是c是奇數(shù)均不符合題意,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,綜上,T為432或456或840或864或888.【點(diǎn)睛】本題考查新定義下的實(shí)數(shù)運(yùn)算、有理數(shù)混合運(yùn)算,整式的加減運(yùn)算,能夠結(jié)合倍數(shù)的特點(diǎn)及熟練掌握整數(shù)的奇偶性是解題關(guān)鍵.13.(1);(2);(3),點(diǎn)C的坐標(biāo)為【分析】(1)由題意易得,然后可求a、b的值,進(jìn)而問題可求解;(2)由(1)及題意易得,然后根據(jù)建立方程求解即可;(3)分別過點(diǎn)作軸于點(diǎn)P,軸于點(diǎn)Q,由題意易得,然后可得,進(jìn)而可求t的值,最后根據(jù)(2)可得三角形的面積為3,則問題可求解.【詳解】解:(1)∵,∴,∴,∴點(diǎn),點(diǎn);(2)由(1)可得點(diǎn),點(diǎn),∵軸于點(diǎn),軸于點(diǎn),軸于點(diǎn),∴,,∵,∴,∵,且,∴,化簡得;(3)分別過點(diǎn)作軸于點(diǎn)P,軸于點(diǎn)Q,如圖所示:∵線段以每秒2個單位長度的速度向左水平移動到線段,時間為,∴,∵三角形和三角形的面積相等,∴,∴,∴,解得:,∴,由(2)可得三角形的面積為,∴三角形的面積為3,即,∴,∴.【點(diǎn)睛】本題主要考查圖形與坐標(biāo)、算術(shù)平方根與偶次冪的非負(fù)性及等積法,熟練掌握圖形與坐標(biāo)、算術(shù)平方根與偶次冪的非負(fù)性及等積法是解題的關(guān)鍵.14.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過點(diǎn)E作EF∥AB,然后根據(jù)兩直線平行內(nèi)錯角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解即可;(3)分當(dāng)點(diǎn)B在點(diǎn)A左側(cè)和當(dāng)點(diǎn)B在點(diǎn)A右側(cè),再分三種情況,討論,分別過點(diǎn)E作EF∥AB,由角平分線的定義,平行線的性質(zhì),以及角的和差計算即可.【詳解】解:(1)當(dāng)n=20時,∠ABC=40°,過E作EF∥AB,則EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)當(dāng)點(diǎn)B在點(diǎn)A左側(cè)時,由(2)可知:∠BED=n°+40°;當(dāng)點(diǎn)B在點(diǎn)A右側(cè)時,如圖所示,過點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如圖所示,過點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如圖所示,過點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;綜上所述,∠BED的度數(shù)為n°+40°或n°-40°或220°-n°.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),以及角平分線的定義,正確應(yīng)用平行線的性質(zhì)得出各角之間關(guān)系是解題關(guān)鍵.15.(1);(2);(3)存在點(diǎn),其坐標(biāo)為或.【分析】(1)利用平移得性質(zhì)確定出平移得單位和方向;(2)根據(jù)平移得性質(zhì),設(shè)出平移單位,根據(jù)S△BCD=7(S△BCD建立方程求解,即可);(3)設(shè)出點(diǎn)P的坐標(biāo),表示出PC用,建立方程求解即可.【詳解】(1)∵B(3,0)平移后的對應(yīng)點(diǎn),∴設(shè),∴即線段向左平移5個單位,再向上平移4個單位得到線段∴點(diǎn)平移后的對應(yīng)點(diǎn);(2)∵點(diǎn)C在軸上,點(diǎn)D在第二象限,∴線段向左平移3個單位,再向上平移個單位,∴連接,,∴∴;(3)存在設(shè)點(diǎn),∴∵,∴∴,∴∴存在點(diǎn),其坐標(biāo)為或.【點(diǎn)睛】本題考查了線段平移的性質(zhì),解題的關(guān)鍵在利用平移的性質(zhì),得到點(diǎn)坐標(biāo)的關(guān)系、圖形面積的關(guān)系,根據(jù)面積的關(guān)系,從而求出點(diǎn)的坐標(biāo).16.(1);(2)-17【分析】(1)解方程組求出x、y的值,根據(jù)列不等式組求出答案;(2)將兩個方程相加,求得6x+3y=-9,即可得到答案.【詳解】解:(1)解方程組得,∵,∴,解得;(2)由①+②得2x+y=-3,∴3(2x+y)=-9,即6x+3y=-9,∴=-9-8=-17.【點(diǎn)睛】此題考查解二元一次方程組,解一元一次不等式組,已知式子的值求代數(shù)式的值,正確解方程組是解題的關(guān)鍵.17.(1);(2)當(dāng)時,和面積的相等;(3)m的取值范圍是【分析】(1)利用非負(fù)數(shù)的性質(zhì)求出a,b,c即可.(2)設(shè)點(diǎn)D的坐標(biāo)為(0,y),根據(jù)面積關(guān)系,構(gòu)建方程求出y,再根據(jù)△BOC和△AOD面積的相等,構(gòu)建方程求出t即可.(3)分兩種情形:①當(dāng)-2<m<0時,如圖1中,②當(dāng)m≤-2時,如圖2中,根據(jù)S△MOC≥5,構(gòu)建不等式求解即可.【詳解】解:(1)∵|a-2|+(b-3)2+=0,又∵|a-2|≥0,(b-3)2≥0,≥0,∴,∴a=2,b=3,c=-4;(2)設(shè)點(diǎn)D的坐標(biāo)為(0,y),則S△BOD=×BO×OD=×4×y=2y,S△AOD=xA?OD=×2y=y,S△AOB=×OB?yA=×4×3=6,∵S△BOD+S△AOD=S△AOB,即2y+y=6,解得y=2,即點(diǎn)D的坐標(biāo)為(0,2),∴S△BOC=BO?yc=×4t=2t,S△AOD=xA?OD=×2×2=2,∵△BOC和△AOD面積的相等,即2t=2,解得t=1,∴當(dāng)t=1時,△BOC和△AOD面積的相等;(3)①當(dāng)-2<m<0時,如圖1中,過點(diǎn)C作CF⊥軸于點(diǎn)F,過點(diǎn)M作GE⊥軸于點(diǎn)E,過點(diǎn)C作CG⊥軸交GE于點(diǎn)G,則四邊形CGEF為矩形,∵SCGEF=2×4=8,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(m+2)×4=2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=8?1?(?m)?2(m+2)=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,這與-2<m<0矛盾.②當(dāng)m≤-2時,如圖2中,過點(diǎn)C作GF⊥軸于點(diǎn)F,過點(diǎn)M作ME⊥軸于點(diǎn)E,過點(diǎn)M作MG⊥軸交GF于點(diǎn)G,則四邊形MEFG為矩形,∵SGMEF=(0-m)×4=-4m,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(?2?m)×4=?2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=?4m?1?(?m)?[?2(m+2)]=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,綜上所述,m的取值范圍是m≤-4.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的性質(zhì),三角形的面積,非負(fù)數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù),構(gòu)建方程解決問題,屬于中考壓軸題.18.(1)①1,4;3,0;2,﹣4;②2;(2)見解析;(3)t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【分析】(1)①利用非負(fù)數(shù)的性質(zhì)求出a,b的值,可得結(jié)論.②利用三角形面積公式求解即可.(2)連接DH,根據(jù)△ODH的面積+△ADH的面積=△OAH的面積,構(gòu)建關(guān)系式,可得結(jié)論.(3)分兩種情形:①當(dāng)點(diǎn)P在線段OB上,②當(dāng)點(diǎn)P在BO的延長線上時,分別利用面積關(guān)系,構(gòu)建方程,可得結(jié)論.【詳解】(1)解:①∵,又∵≥0,(b﹣3)2≥0,∴a=4,b=3,∴A(1,4),B(3,0),∵B是由A平移得到的,∴A向右平移2個單位,向下平移4個單位得到B,∴點(diǎn)C是由點(diǎn)O向右平移2個單位,向下平移4個單位得到的,∴C(2,﹣4),故答案為:1,4;3,0;2,﹣4.②△AOH的面積=×1×4=2,故答案為:2.(2)證明:如圖,連接DH.∵△ODH的面積+△ADH的面積=△OAH的面積,∴×1×n+×4×(1﹣m)=2,∴4m=n.(3)解:①當(dāng)點(diǎn)P在線段OB上,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,∴×(3﹣2t)×4=×2t,解得t=1.2.此時P(0.6,0).②當(dāng)點(diǎn)P在BO的延長線上時,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,×(2t﹣3)×4=×2×t,解得t=2,此時P(﹣1,0),綜上所述,t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【點(diǎn)睛】本題考查坐標(biāo)與圖形變化-平移,非負(fù)數(shù)的性質(zhì),三角形的面積等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題.19.(1)C;(2)39和29【分析】(1)首先設(shè)較大的兩位數(shù)為,較小的兩位數(shù)為,根據(jù)題意可得等量關(guān)系:①兩個兩位數(shù)的和為68,②比大990,根據(jù)等量關(guān)系列出方程組;(2)利用加減消元法解方程組即可.【詳解】解:(1)解:設(shè)較大的兩位數(shù)為,較小的兩位數(shù)為,根據(jù)題意,得故選:C;(2)化簡得,①+②,得,即.①-②,得,即.所以這兩個數(shù)分別是39和29.【點(diǎn)睛】此題主要考查了由實(shí)際問題抽象出二元一次方程組和解二元一次方程組,關(guān)鍵是弄清題目意思,表示出“較小的兩位數(shù)寫在較大的兩位數(shù)的右邊,得到一個四位數(shù)為”,把較小的兩位數(shù)寫在較大的兩位數(shù)的左邊,得到另一個四位數(shù)為.20.(1)白紙有100噸,作業(yè)本有90噸;(2)69520元【分析】(1)設(shè)白紙有噸,作業(yè)本有噸,根據(jù)共支出公路運(yùn)費(fèi)4200元,鐵路運(yùn)費(fèi)26280元.列出二元一次方程組,解之即可;(2)由銷售款(白紙的購進(jìn)款與運(yùn)輸費(fèi)的和),進(jìn)行計算即可.【詳解】解:(1)設(shè)白紙有噸,作業(yè)本有噸,由題意,得,整理得:,解得.答:白紙有100噸,作業(yè)本有90噸;(2)(元).答:這批作業(yè)本的銷售款比白紙的購進(jìn)款與運(yùn)輸費(fèi)的和多69520元.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是找準(zhǔn)等量關(guān)系,正確列出二元一次方程組.21.(1);(2);(3)與之間的數(shù)量關(guān)系為.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)和解二元一次方程組求解即可;(2)設(shè),先根據(jù)平移的性質(zhì)可得,過D作軸于P,再根據(jù)三角形ADP的面積得出,從而可得,然后根據(jù)線段的和差可得,由此即可得出答案;(3)設(shè)AH與CD交于點(diǎn)Q,過H,G分別作DF的平行線MN,KJ,設(shè),由平行線的性質(zhì)可得,由此即可得出結(jié)論.【詳解】(1)∵,且∴解得:則;(2)設(shè)∵將線段AB平移得到CD,∴由平移的性質(zhì)得如圖1,過D作軸于P∴∵∴即解得∴∴;(3)與之間的數(shù)量關(guān)系為,求解過程如下:如圖2,設(shè)AH與CD交于點(diǎn)Q,過H,G分別作DF的平行線MN,KJ∵HD平分,HF平分∴設(shè)∵AB平移得到CD∴∴,∴∵∴∴∵∴∴∴.【點(diǎn)睛】本題屬于一道較難的綜合題,考查了解二元一次方程組、平移的性質(zhì)、平行線的性質(zhì)等知識點(diǎn),較難的是題(3),通過作兩條輔助線,構(gòu)造平行線,從而利用平行線的性質(zhì)是解題關(guān)鍵.22.(1);(2);(3)a=3,b=2.【分析】(1)利用加減消元法,可以求得;(2)利用換元法,設(shè)m+5=x,n+3=y,則方程組化為(1)中的方程組,可求得x,y的值進(jìn)一步可求出原方程組的解;(3)把a(bǔ)m和bn當(dāng)成一個整體利用已知條件可求出am和bn,再把bn代入2m-bn=-2中求出m的值,然后把m的值代入3m+n=5可求出n的值,繼而可求出a、b的值.【詳解】解:(1)兩個方程相加得,∴,把代入得,∴方程組的解為:;故答案是:;(2)設(shè)m+5=x,n+3=y(tǒng),則原方程組可化為,由(1)可得:,∴m+5=1,n+3=2,∴m=-4,n=-1,∴,故答案是:;(3)由方程組與有相同的解可得方程組,解得,把bn=4代入方程2m﹣bn=﹣2得2m=2,解得m=1,再把m=1代入3m+n=5得3+n=5,解得n=2,把m=1代入am=3得:a=3,把n=2代入bn=4得:b=2,所以a=3,b=2.【點(diǎn)睛】本題主要考查二元一次方程組的解法,重點(diǎn)是考查整體思想及換元法的應(yīng)用,解題的關(guān)鍵是理解好整體思想.23.(1)A的單價30元,B的單價15元(2)購買A獎品8個,購買B獎品22個,花費(fèi)最少【分析】(1)設(shè)A的單價為x元,B的單價為y元,根據(jù)題意列出方程組,即可求解;(2)設(shè)購買A獎品z個,則購買B獎品為個,購買獎品的花費(fèi)為W元,根據(jù)題意得到由題意可知,,,根據(jù)一次函數(shù)的性質(zhì),即可求解;【詳解】解:(1)設(shè)A的單價為x元,B的單價為y元,根據(jù)題意,得,,A的單價30元,B的單價15元;(2)設(shè)購買A獎品z個,則購買B獎品為個,購買獎品的花費(fèi)為W元,由題意可知,,,,當(dāng)時,W有最小值為570元,即購買A獎品8個,購買B獎品22個,花費(fèi)最少;【點(diǎn)睛】本題考查二元一次方程組的應(yīng)用,一次函數(shù)的應(yīng)用;能夠根據(jù)條件列出方程組,將最優(yōu)方案轉(zhuǎn)化為一次函數(shù)性質(zhì)解題是關(guān)鍵.24.(1),,,;(2)的取值范圍為;(3)①;②【分析】(1)根據(jù)求出a、b、c的值,由此求解即可;(2)分當(dāng)點(diǎn)在直線上位于軸左側(cè)時和當(dāng)點(diǎn)在直線上位于軸右側(cè)時討論求解即可得到答案;(3)①由由得,,由此求解即可;②易得,連接,由得,,化簡得,,然后聯(lián)立求解即可.【詳解】解:(1)∵,∴,∴,,,∴,,,∴,,,∴AC=10,OB=6,∴;(2)當(dāng)點(diǎn)在直線上位于軸左側(cè)時,由題意得,,解得,,當(dāng)時,,結(jié)合圖形可知,當(dāng)時,;同理可得,當(dāng)點(diǎn)在直線上位于軸右側(cè)時,,當(dāng)時,,,解得,,結(jié)合圖形可知,當(dāng)時,,∴的取值范圍為;(3)①由得,,化簡得,;②易得,連接,由得,,化簡得,,聯(lián)立方程組,解得,∴【點(diǎn)睛】本題主要考查了絕對值和算術(shù)平方根的非負(fù)性,三角形面積,解二元一次方程組,坐標(biāo)與圖形,截圖的關(guān)鍵在于能夠熟練掌握相關(guān)是進(jìn)行求解.25.(1)是.(2)a的最大值為,最小值為;(3)【分析】(1)先求解當(dāng)時,的最大值與最小值,再根據(jù)定義判斷即可;(2)當(dāng)時,得分<,分別求解在內(nèi)時的最大值與最小值,再列不等式組即可得到答案;(3)當(dāng)時,分,兩種情況分別求解的最大值與最小值,再列不等式(組)求解即可.【詳解】解:(1)當(dāng)時,取最大值,當(dāng)時,取最小值所以代數(shù)式是的“湘一代數(shù)式”.故答案為:是.(2)∵,∴0≤|x|≤2,∴①當(dāng)a≥0時,x=0時,有最大值為,x=2或-2時,有最小值為所以可得不等式組,由①得:由②得:所以:②a<0時,x=0時,有最小值為,x=2或-2時,的有大值為所以可得不等式組,由①得:由②得:所以:<,綜上①②可得,所以a的最大值為,最小值為.(3)是的“湘一代數(shù)式”,當(dāng)時,的最大值是最小值是當(dāng)時,當(dāng)時,取最小值當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論