基礎(chǔ)強(qiáng)化人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合訓(xùn)練試題(含答案解析)_第1頁
基礎(chǔ)強(qiáng)化人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合訓(xùn)練試題(含答案解析)_第2頁
基礎(chǔ)強(qiáng)化人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合訓(xùn)練試題(含答案解析)_第3頁
基礎(chǔ)強(qiáng)化人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合訓(xùn)練試題(含答案解析)_第4頁
基礎(chǔ)強(qiáng)化人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合訓(xùn)練試題(含答案解析)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,四邊形ABCD是平行四邊形,下列結(jié)論中錯(cuò)誤的是()A.當(dāng)?ABCD是矩形時(shí),∠ABC=90° B.當(dāng)?ABCD是菱形時(shí),AC⊥BDC.當(dāng)?ABCD是正方形時(shí),AC=BD D.當(dāng)?ABCD是菱形時(shí),AB=AC2、順次連接對角線互相垂直的四邊形的各邊中點(diǎn),所形成的新四邊形是()A.菱形 B.矩形 C.正方形 D.三角形3、如圖,已知正方形ABCD的邊長為6,點(diǎn)E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點(diǎn)H,點(diǎn)G為DE的中點(diǎn),連接GH,則GH的長為()A. B. C.4.5 D.4.34、在□ABCD中,AC=24,BD=38,AB=m,則m的取值范圍是()A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<125、如圖,在長方形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在點(diǎn)F處,連接CF,當(dāng)△CEF為直角三角形時(shí),則BE的長是()A.4 B.3 C.4或8 D.3或6第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,點(diǎn)E,F(xiàn)在正方形ABCD的對角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.2、如圖,矩形ABCD中,AC、BD相交于點(diǎn)O且AC=12,如果∠AOD=60°,則DC=__.3、如圖,已知在矩形中,,,將沿對角線AC翻折,點(diǎn)B落在點(diǎn)E處,連接,則的長為_________.4、如圖,在平行四邊形ABCD中,∠B=45°,AD=8,E、H分別為邊AB、CD上一點(diǎn),將?ABCD沿EH翻折,使得AD的對應(yīng)線段FG經(jīng)過點(diǎn)C,若FG⊥CD,CG=4,則EF的長度為_____.5、如圖,M,N分別是矩形ABCD的邊AD,AB上的點(diǎn),將矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,連接MC,若AB=8,AD=16,BE=4,則MC的長為________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在每個(gè)小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.

(1)在方格紙中畫出以AB為對角線的正方形AEBF,點(diǎn)E、F在小正方形的頂點(diǎn)上;(2)在方格紙中畫出以CD為斜邊的等腰直角三角形CDM,連接BM,并直接寫出BM的長.2、在△ABC中,AB=AC=x,BC=12,點(diǎn)D,E分別為BC,AC的中點(diǎn),線段BE的垂直平分線交邊BC于點(diǎn)F,(1)當(dāng)x=10時(shí),求線段AD的長.(2)x取何值時(shí),點(diǎn)F與點(diǎn)D重合.(3)當(dāng)DF=1時(shí),求x2的值.3、如圖,ABCD的對角線AC、BD相交于點(diǎn)O,BD12cm,AC6cm,點(diǎn)E在線段BO上從點(diǎn)B以1cm/s的速度向點(diǎn)O運(yùn)動(dòng),點(diǎn)F在線段OD上從點(diǎn)O以2cm/s的速度向點(diǎn)D運(yùn)動(dòng).

(1)若點(diǎn)E、F同時(shí)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),四邊形AECF是平行四邊形.(2)在(1)的條件下,當(dāng)AB為何值時(shí),AECF是菱形;(3)求(2)中菱形AECF的面積.4、如圖,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處;再將矩形沿折疊,使點(diǎn)落在點(diǎn)處且過點(diǎn).

(1)求證:四邊形是平行四邊形;(2)當(dāng)是多少度時(shí),四邊形為菱形?試說明理由.5、如圖1,正方形ABCD的邊長為a,E為邊CD上一動(dòng)點(diǎn)(點(diǎn)E與點(diǎn)C、D不重合),連接AE交對角線BD于點(diǎn)P,過點(diǎn)P作PF⊥AE交BC于點(diǎn)F.(1)求證:PA=PF;(2)如圖2,過點(diǎn)F作FQ⊥BD于Q,在點(diǎn)E的運(yùn)動(dòng)過程中,PQ的長度是否發(fā)生變化?若不變,求出PQ的長;若變化,請說明變化規(guī)律.(3)請寫出線段AB、BF、BP之間滿足的數(shù)量關(guān)系,不必說明理由.-參考答案-一、單選題1、D【解析】【分析】由矩形的四個(gè)角是直角可判斷A,由菱形的對角線互相垂直可判斷B,由正方形的對角線相等可判斷C,由菱形的四條邊相等可判斷D,從而可得答案.【詳解】解:當(dāng)?ABCD是矩形時(shí),∠ABC=90°,正確,故A不符合題意;當(dāng)?ABCD是菱形時(shí),AC⊥BD,正確,故B不符合題意;當(dāng)?ABCD是正方形時(shí),AC=BD,正確,故C不符合題意;當(dāng)?ABCD是菱形時(shí),AB=BC,故D符合題意;故選D【點(diǎn)睛】本題考查的是矩形,菱形,正方形的性質(zhì),熟練的記憶矩形,菱形,正方形的性質(zhì)是解本題的關(guān)鍵.2、B【解析】【分析】先畫出圖形,再根據(jù)三角形中位線定理得到所得四邊形的對邊平行且相等,那么其必為平行四邊形,然后根據(jù)鄰邊互相垂直得出四邊形是矩形.【詳解】解:如圖,∵、、、分別是、、、的中點(diǎn),∴,,,∴四邊形是平行四邊形,∵,∴,∴平行四邊形是矩形,又與不一定相等,與不一定相等,矩形不一定是正方形,故選:B.【點(diǎn)睛】本題考查了三角形中位線定理、矩形的判定等知識點(diǎn),熟練掌握三角形中位線定理是解題關(guān)鍵.3、A【解析】【分析】根據(jù)正方形的四條邊都相等可得BC=DC,每一個(gè)角都是直角可得∠B=∠DCF=90°,然后利用“邊角邊”證明△CBE≌△DCF,得∠BCE=∠CDF,進(jìn)一步得∠DHC=∠DHE=90°,從而知GH=DE,利用勾股定理求出DE的長即可得出答案.【詳解】解:∵四邊形ABCD為正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵點(diǎn)G為DE的中點(diǎn),∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故選A.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進(jìn)行求解.4、C【解析】【分析】作出平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,,然后在中,利用三角形三邊的關(guān)系即可確定m的取值范圍.【詳解】解:如圖所示:∵四邊形ABCD為平行四邊形,∴,,在中,,∴,即,故選:C.【點(diǎn)睛】題目主要考查平行四邊形的性質(zhì)及三角形三邊的關(guān)系,熟練掌握平行四邊形的性質(zhì)及三角形三邊關(guān)系是解題關(guān)鍵.5、D【解析】【分析】當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí)連接,先利用勾股定理計(jì)算出,根據(jù)折疊的性質(zhì)得,而當(dāng)為直角三角形時(shí),只能得到,所以點(diǎn)A、F、C共線,即沿折疊,使點(diǎn)B落在對角線上的點(diǎn)F處,則,,可計(jì)算出然后利用勾股定理求解即可;②當(dāng)點(diǎn)F落在邊上時(shí).此時(shí)為正方形,由此即可得到答案.【詳解】解:當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí),如圖所示.連接,在中,,,∴,∵△ABE沿折疊,使點(diǎn)B落在點(diǎn)F處,∴,BE=EF,當(dāng)為直角三角形時(shí),只能得到,∴∴點(diǎn)A、F、C共線,即△ABE沿折疊,使點(diǎn)B落在對角線上的點(diǎn)F處,∴,∴,設(shè)BE=EF=x,則EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②當(dāng)點(diǎn)F落在邊上時(shí),如圖所示,由折疊的性質(zhì)可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴為正方形,∴,綜上所述,BE的長為3或6.故選D.【點(diǎn)睛】本題考查折疊問題:折疊前后兩圖形全等,即對應(yīng)線段相等;對應(yīng)角相等.也考查了矩形的性質(zhì),正方形的性質(zhì)與判定以及勾股定理.解題的關(guān)鍵是要注意本題有兩種情況,需要分類討論,避免漏解.二、填空題1、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對角線相等且互相垂直平分是解題的關(guān)鍵.2、【解析】【分析】根據(jù)矩形的對角線互相平分且相等可得OA=OD,然后判斷出△AOD是等邊三角形,再根據(jù)勾股定理解答即可.【詳解】解:∵四邊形ABCD是矩形,∴OA=OD=AC=×12=6,∠ADC=90°,∵∠AOD=60°,∴△AOD是等邊三角形,∴AD=OA=6,∴.故答案為:.【點(diǎn)睛】本題考查了矩形的性質(zhì)和勾股定理以及等邊三角形的判定,解題關(guān)鍵是根據(jù)矩形的性質(zhì)得出△AOD是等邊三角形.3、【解析】【分析】過點(diǎn)E作EF⊥AD于點(diǎn)F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結(jié)合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過點(diǎn)E作EF⊥AD于點(diǎn)F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設(shè)CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點(diǎn)睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構(gòu)造直角三角形,是解題的關(guān)鍵.4、【解析】【分析】延長CF與AB交于點(diǎn)M,由平行四邊形的性質(zhì)得BC長度,GM⊥AB,由折疊性質(zhì)得GF,∠EFM,進(jìn)而得FM,再根據(jù)△EFM是等腰直角三角形,便可求得結(jié)果.【詳解】解:延長CF與AB交于點(diǎn)M,∵FG⊥CD,AB∥CD,∴CM⊥AB,∵∠B=45°,BC=AD=8,∴CM=4,由折疊知GF=AD=8,∵CG=4,∴MF=CM-CF=CM-(GF-CG)=4-4,∵∠EFC=∠A=180°-∠B=135°,∴∠MFE=45°,∴EF=MF=(4-4)=8-4.故答案為:8-4.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),折疊的性質(zhì),解直角三角形的應(yīng)用,關(guān)鍵是作輔助線構(gòu)造直角三角形.5、10【解析】【分析】過E作EF⊥AD于F,根據(jù)矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,得出△ANM≌△ENM,可得AM=EM,根據(jù)矩形ABCD,得出∠B=∠A=∠D=90°,再證四邊形ABEF為矩形,得出AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4,根據(jù)勾股定理,即,解方程m=10即可.【詳解】解:過E作EF⊥AD于F,∵矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四邊形ABEF為矩形,∴AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4在Rt△FEM中,根據(jù)勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案為10.【點(diǎn)睛】本題考查折疊軸對稱性質(zhì),矩形判定與性質(zhì),勾股定理,掌握折疊軸對稱性質(zhì),矩形判定與性質(zhì),勾股定理是解題關(guān)鍵.三、解答題1、(1)見詳解;(2)見詳解.【分析】(1)根據(jù)勾股定理求出AB的長,以AB為對角線的正方形AEBF,根據(jù)正方形的性質(zhì)求出正方形邊長AE=,根據(jù)勾股定理構(gòu)造直角三角形橫1豎3,或橫3豎1,利用點(diǎn)A平移找到點(diǎn)E,點(diǎn)F即可完成求解;(2)根據(jù)勾股定理求出CD的長,△CDM為等腰直角三角形,設(shè)CM=DM=x,再利用勾股定理,根據(jù)勾股定理構(gòu)造橫1豎2,或橫2豎1直角三角形,利用點(diǎn)C平移得到點(diǎn)M,即可得到答案.【詳解】(1)根據(jù)勾股定理AB=,∵以AB為對角線的正方形AEBF,∴S正方形=,∵正方形AEBF的邊長為AE,∴AE2=10,∴AE=,根據(jù)勾股定理可知構(gòu)造橫1豎3或橫3豎1的直角三角形作線段AE、AF,點(diǎn)A向下平移1格,再向左平移3格得點(diǎn)E,點(diǎn)A向右平移1格,再向下平移3格得點(diǎn)F,∴連結(jié)AE,BE,BF,AF,則正方形ABEF作圖如下:(2)根據(jù)勾股定理,∵△CDM為等腰直角三角形,設(shè)CM=DM=x,根據(jù)勾股定理,即,解得,∴CM=DM=,根據(jù)勾股定理構(gòu)造橫1豎2,或橫2豎1直角三角形作線段CM、DM,點(diǎn)C向右移動(dòng)2格,再向上移動(dòng)1格得點(diǎn)M,連結(jié)CM,DM,則△CDM為所求如圖.

【點(diǎn)睛】本題考查了正方形性質(zhì)、正方形面積,邊長,等腰直角三角形、腰長,勾股定理,一元二次方程,平移;解題的關(guān)鍵是熟練掌握正方形性質(zhì)、等腰直角三角形性質(zhì),勾股定理,一元二次方程,平移,從而完成求解.2、(1)8;(2)12;(3)72或216【分析】(1)根據(jù)等腰三角形的性質(zhì)以及勾股定理即可解決問題.

(2)如圖2中,當(dāng)點(diǎn)F與D重合時(shí),連接DE.求出此時(shí)x的值即可判斷.

(3)分兩種情形分別求解即可解決問題.【詳解】解:(1)如圖1中,∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,∵AB=10,BD=CD=6,∴AD===8.(2)如圖2中,當(dāng)點(diǎn)F與D重合時(shí),連接DE.∵OF垂直平分線段BE,∴BD=DE=6,∵∠ADC=90°,AE=EC,∴AC=2DE=12,當(dāng)x=12時(shí),點(diǎn)F與點(diǎn)D重合.(3)①當(dāng)點(diǎn)F在點(diǎn)D左側(cè)時(shí),作EG⊥BC于G,連接EF,DE.∵DE=EC,EG⊥BC∴DG=GC=3,∵BD=6,DF=1,∴BF=5,∵OF垂直平分線段EB,∴EF=FB=5,在Rt△EFG中,∵EF=5,F(xiàn)G=4,∴EG==3,在Rt△DEG中,DE==3,∵AC=2DE,∴AC=6,∴x2=AC2=72.②當(dāng)點(diǎn)F在點(diǎn)D右側(cè)時(shí),作EG⊥BC于G,連接EF,DE.易知BF=EF=7,F(xiàn)G=2,EG===3,∴DE==3,∴AC=2DE=6,∴x2=AC2=216.【點(diǎn)睛】本題屬于三角形綜合題,考查了等腰三角形的性質(zhì),線段的垂直平分線的性質(zhì),勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,學(xué)會用分類討論的思想思考問題.3、(1)t=2s;(2)AB=;(3)24【分析】(1)若是平行四邊形,所以BD=12cm,則BO=DO=6cm,故有6-t=2t,即可求得t值;

(2)若是菱形,則AC垂直于BD,即有,故AB可求;

(3)根據(jù)四邊形AECF是菱形,求得,根據(jù)平行四邊形的性質(zhì)得到BO=OD,求得BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到結(jié)論.【詳解】解:(1)∵四邊形ABCD為平行四邊形,∴AO=OC,EO=OF,∵BO=OD=6cm,∴,∴,∴,∴當(dāng)t為2秒時(shí),四邊形AECF是平行四邊形;(2)若四邊形AECF是菱形,則,,;∴當(dāng)AB為時(shí),平行四邊形是菱形;(3)由(1)(2)可知當(dāng)t=2s,AB=時(shí),四邊形AECF是菱形,∴EO=6?t=4,∴EF=8,∴菱形AECF的面積=.【點(diǎn)睛】本題考查了平行四邊形的判定和性質(zhì)和菱形的判定和性質(zhì),勾股定理,菱形的面積的計(jì)算.4、(1)見解析;(2)當(dāng)∠B1FE=60°時(shí),四邊形EFGB為菱形,理由見解析【分析】(1)由題意,,結(jié)合,得,同理可得,即,結(jié)合,依據(jù)平行四邊形的判定定理即可證明四邊形BEFG是平行四邊形;(2)根據(jù)菱形的性質(zhì)可得,結(jié)合(1)中結(jié)論得出為等邊三角形,依據(jù)等邊三角形的性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論