版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
吉林省蛟河市中考數(shù)學測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下列關于隨機事件的概率描述正確的是()A.拋擲一枚質地均勻的硬幣出現(xiàn)“正面朝上”的概率為0.5,所以拋擲1000次就一定有500次“正面朝上”B.某種彩票的中獎率為5%,說明買100張彩票有5張會中獎C.隨機事件發(fā)生的概率大于或等于0,小于或等于1D.在相同條件下可以通過大量重復實驗,用一個隨機事件的頻率去估計概率2、如圖,在Rt△ABC中,,,點D、E分別是AB、AC的中點.將△ADE繞點A順時針旋轉60°,射線BD與射線CE交于點P,在這個旋轉過程中有下列結論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點P運動的路徑長為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④3、如圖,正五邊形ABCDE內接于⊙O,則∠CBD的度數(shù)是()A.30° B.36° C.60° D.72°4、已知學校航模組設計制作的火箭升空高度h(m)與飛行時間t(s)滿足函數(shù)表達式h=﹣t2+24t+1,則下列說法中正確的是(
)A.點火后1s和點火后3s的升空高度相同B.點火后24s火箭落于地面C.火箭升空的最大高度為145mD.點火后10s的升空高度為139m5、距考試還有20天的時間,為鼓舞干勁,老師要求班上每一名同學要給同組的其他同學寫一份拼搏進取的留言,小明所在的小組共寫了30份留言,該小組共有()A.7人 B.6人 C.5人 D.4人二、多選題(5小題,每小題3分,共計15分)1、如圖,AB是的直徑,C是上一點,E是△ABC的內心,,延長BE交于點F,連接CF,AF.則下列結論正確的是(
)A. B.C.△AEF是等腰直角三角形 D.若,則2、在圖所示的4個圖案中不包含圖形的旋轉的是(
)A. B. C. D.3、已知A、B兩點的坐標分別是(-2,3)和(2,3),則下面四個結論正確的有(
)A.A、B關于x軸對稱; B.A、B關于y軸對稱;C.A、B關于原點對稱; D.若A、B之間的距離為44、下列說法中,不正確的是(
)A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線垂直于這條弧所對的弦C.弦的垂線必經(jīng)過這條弦所在圓的圓心D.在一個圓內平分一條弧和平分它所對的弦的直線必經(jīng)過這個圓的圓心5、下列四個說法中,不正確的是(
)A.一元二次方程有實數(shù)根B.一元二次方程有實數(shù)根C.一元二次方程有實數(shù)根D.一元二次方程x2+4x+5=a(a≥1)有實數(shù)根第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、在平面直角坐標系中,將點A先向右平移4個單位,再向下平移6個單位得到點B,如果點A和點B關于原點對稱,那么點A的坐標是____________.2、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點O,∠BOC=60°,分別在、線段AB和AC上選取點P、E、F,則PE+EF+FP的最小值為____________.3、在平面直角坐標系中,點,圓C與x軸相切于點A,過A作一條直線與圓交于A,B兩點,AB中點為M,則OM的最大值為______.4、若m,n是關于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.5、如圖,,,以為直徑作半圓,圓心為點;以點為圓心,為半徑作,過點作的平行線交兩弧于點、,則陰影部分的面積是________.四、簡答題(2小題,每小題10分,共計20分)1、為了測量大樓頂上(居中)避雷針BC的長度,在地面上點A處測得避雷針底部B和頂部C的仰角分別為55°58′和57°,已知點A與樓底中間部位D的距離約為80米,求避雷針BC的長度.(參考數(shù)據(jù):sin55°58′≈0.83,cos55°58′≈0.56,tan55°58′≈1.48,sin57°≈0.84,tan57°≈1.54)2、如圖,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點,連接.(1)求拋物線的解析式;(2)點在拋物線的對稱軸上,當?shù)闹荛L最小時,點的坐標為_____________;(3)點是第四象限內拋物線上的動點,連接和.求面積的最大值及此時點的坐標;(4)若點是對稱軸上的動點,在拋物線上是否存在點,使以點、、、為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.五、解答題(4小題,每小題10分,共計40分)1、如圖,在△ABC是⊙O的內接三角形,∠B=45°,連接OC,過點A作AD∥OC,交BC的延長線于D.(1)求證:AD是⊙O的切線;(2)若⊙O的半徑為2,∠OCB=75°,求△ABC邊AB的長.2、隨著信息技術的迅猛發(fā)展,人們去商場購物的支付方式更加多樣、便捷.某校數(shù)學興趣小組設計了一份調查問卷,要求每人選且只選一種最喜歡的支付方式.現(xiàn)將調查結果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖.請結合圖中所給的信息解答下列問題:(1)這次活動共調查了______人,并補充完整條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為______;(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種方式中選一種方式進行支付,請用畫樹狀圖或列表的方法,求出兩人恰好選擇同一種支付方式的概率.3、某化妝品專賣店,為了吸引顧客,在“母親節(jié)”當天舉辦了甲.乙兩種品牌化妝品有獎酬賓活動,凡購物滿88元,均可得到一次搖獎的機會.已知在搖獎機內裝有2個紅球和2個白球,除顏色外其他都相同,搖獎者必須從搖獎機內一次連續(xù)搖出兩個球,根據(jù)球的顏色決定送禮金券的多少(如表).甲種品牌化妝品球兩紅一紅一白兩白禮金券(元)6126乙種品牌化妝品球兩紅一紅一白兩白禮金券(元)12612(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率;(2)如果一個顧客當天在本店購買滿88元,若只考慮獲得最多的禮品券,請你幫助分析選擇購買哪種品牌的化妝品?并說明理由.4、如圖,是由若干個完全相同的小正方體組成的一個幾何體.(1)請畫出這個幾何體的從左面看和從上面看的形狀圖;(用陰影表示)(2)已知每個小正方體的邊長是2cm,求出這個幾何體的表面積是多少?-參考答案-一、單選題1、D【分析】根據(jù)隨機事件、必然事件以及不可能事件的定義即可作出判斷.【詳解】解:概率反映的是隨機性的規(guī)律,但每次試驗出現(xiàn)的結果具有不確定,故選項A、B錯誤;隨機事件發(fā)生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故選項C錯誤;在相同條件下可以通過大量重復實驗,用一個隨機事件的頻率去估計概率,故選項D正確;故選:D.【點睛】本題考查了隨機事件、必然事件以及不可能事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.2、B【分析】根據(jù),,點D、E分別是AB、AC的中點.得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點為O,連結AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,L可判斷④點P運動的路徑長為正確即可.【詳解】解:∵,,點D、E分別是AB、AC的中點.∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點為O,連結AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點P運動的路徑長為正確;正確的是①②④.故選B.【點睛】本題考查圖形旋轉性質,線段中點定義,三角形全等判定與性質,圓的切線,正方形判定與性質,勾股定理,銳角三角函數(shù),弧長公式,本題難度大,利用輔助線最長準確圖形是解題關鍵.3、B【分析】求出正五邊形的一個內角的度數(shù),再根據(jù)等腰三角形的性質和三角形的內角和定理計算即可.【詳解】解:∵正五邊形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故選:B.【點睛】本題考查了正多邊形和圓,求出正五邊形的一個內角度數(shù)是解決問題的關鍵.4、C【解析】【分析】分別求出t=1、3、24、10時h的值可判斷A、B、D三個選項,將解析式配方成頂點式可判斷C選項.【詳解】解:A、當t=1時,h=24;當t=3時,h=64;所以點火后1s和點火后3s的升空高度不相同,此選項錯誤;B、當t=24時,h=1≠0,所以點火后24s火箭離地面的高度為1m,此選項錯誤;C、由h=﹣t2+24t+1=﹣(t-12)2+145知火箭升空的最大高度為145m,此選項正確;D、當t=10時,h=141m,此選項錯誤;故選:C.【考點】本題主要考查二次函數(shù)的應用,解題的關鍵是熟練掌握二次函數(shù)的性質.5、B【解析】【分析】設小組有x人,根據(jù)題意,得x(x-1)=30,解方程即可.【詳解】設小組有x人,根據(jù)題意,得x(x-1)=30,整理,得,解方程,得(舍去),故選B.【考點】本題考查了一元二次方程的應用,熟練掌握方程的應用是解題的關鍵.二、多選題1、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項A錯誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項D正確,故選:BCD【考點】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內心性質,等腰直角三角形,等知識,證明△ABC是等腰直角三角形是解題的關鍵.2、AC【解析】【分析】根據(jù)中心對稱與軸對稱的概念,即可求解.【詳解】解:A、是軸對稱圖形,故本選項符合題意;B、是中心對稱圖形,屬于圖形的旋轉,故本選項不符合題意;C、是軸對稱圖形,故本選項符合題意;D、既是軸對稱圖形,也是中心對稱圖形,包含圖形的旋轉,故本選項不符合題意;故選:AC.【考點】本題主要考查了中心對稱與軸對稱的概念,熟練掌握軸對稱圖形的關鍵是尋找對稱軸,圖象沿對稱軸折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合是解題的關鍵.3、BD【解析】【分析】根據(jù)點坐標關于原點對稱、軸對稱的特點,求出對應點坐標即可.【詳解】點A(-2,3)關于x軸對稱的點為(-2,-3),故A錯誤點A(-2,3)關于y軸對稱的點為(2,3),故B正確點A(-2,3)關于原點對稱的點為(2,-3),故C錯誤點A、點B的縱坐標相同,故A、B之間的距離為,故D正確故選BD【考點】本題考查了點坐標關于x,y軸對稱,關于原點中心對稱的特點,以及兩點間距離公式,熟悉對應知識點是解決本題的關鍵.4、ABC【解析】【分析】根據(jù)垂徑定理的推論,即如果一條直線滿足:①垂直于弦,②平分弦,③過圓心,④平分優(yōu)弧,⑤平分劣弧中的兩個條件,即可推論出其余三個,逐一進行判斷即可.【詳解】解:A、由于直徑也是弦,所以平分一條直徑的弦不一定垂直這條直徑,選項說法錯誤,符合題意;B、平分一條弧的直線不一定垂直于這條弧,應該是:過圓心,且平分一條弧的直線垂直于這條弧所對的弦,選項說法錯誤,符合題意;C、弦的垂線不一定經(jīng)過這條弦所在的圓心,應該是:弦的垂直平分線必經(jīng)過這條弦所在的圓心,選項說法錯誤,符合題意;D、在一個圓內,平分一條弧和它所對弦的直線必經(jīng)過這個圓的圓心,選項說法正確,不符合題意;故選ABC.【考點】本題考查了垂徑定理,解題的關鍵是掌握垂徑定理及其推論.5、ABC【解析】【分析】判斷上述方程的根的情況,只要看根的判別式△的值的符號就可以了.【詳解】解:、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程有實數(shù)根,正確,不符合題意;故選:ABC.【考點】本題考查了一元二次方程根的情況與判別式△的關系:解題的關鍵是掌握(1)△方程有兩個不相等的實數(shù)根;(2)△方程有兩個相等的實數(shù)根;(3)△方程沒有實數(shù)根.三、填空題1、【解析】【分析】先按題目要求對A、B點進行平移,再根據(jù)原點對稱的特征:橫縱坐標互為相反數(shù)進行列方程,求解.【詳解】設,向右平移4個單位,再向下平移6個單位得到∵A、B關于原點對稱,∴,,解得,,∴故答案為:【考點】本題考查點的平移和原點對稱的性質,掌握這些是解題關鍵.2、12【分析】如圖,連接BC,AO,作點P關于AB的對稱點M,作點P關于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點P關于AB的對稱點M,作點P關于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當MN的值最小時,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當PA的值最小時,MN的值最小,取AB的中點J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當點P在直線OA上時,PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識,解題的關鍵是學會利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.3、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點,先求出A點坐標,從而可證OM是△ABD的中位線,得到,則當BD最小時,OM也最小,即當B運動到時,BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點∵點C的坐標為(2,2),圓C與x軸相切于點A,∴點A的坐標為(2,0),∴OA=OD=2,即O是AD的中點,又∵M是AB的中點,∴OM是△ABD的中位線,∴,∴當BD最小時,OM也最小,∴當B運動到時,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點睛】本題主要考查了坐標與圖形,一點到圓上一點的距離得到最小值,兩點距離公式,三角形中位線定理,把求出OM的最小值轉換成求BD的最小值是解題的關鍵.4、21【解析】【分析】先根據(jù)根與系數(shù)的關系得到m+n=3,mn=﹣3,再根據(jù)完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計算.【詳解】解:∵m,n是關于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2,x1x2.5、【解析】【分析】連接CE,如圖,利用平行線的性質得∠COE=∠EOB=90°,再利用勾股定理計算出OE=,利用余弦的定義得到∠OCE=60°,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形BCE?S△OCE?S扇形BOD進行計算即可.【詳解】解:連接CE,如圖,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S陰影部分=S扇形BCE?S△OCE?S扇形BOD=,故答案為.【考點】本題考查了扇形面積的計算:求陰影面積的主要思路是將不規(guī)則圖形面積轉化為規(guī)則圖形的面積.四、簡答題1、避雷針BC的長度為4.8米.【解析】【分析】解直角三角形求出CD,BD,根據(jù)BC=CD-BD求解即可.【詳解】解:在Rt△ABD中,∵,∴1.48=,∵AD=80米,∴BD=118.4(米),在Rt△CAD中,∵tan∠CAD=,∴1.54=,∴CD=123.2(米),∴BC=CD-BD=4.8(米)答:避雷針BC的長度為4.8米.【考點】本題考查解直角三角形的應用,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.2、(1);(2);(3)面積最大為,點坐標為;(4)存在點,使以點、、、為頂點的四邊形是平行四邊形,,點坐標為,,.【解析】【分析】(1)將點,代入即可求解;(2)BC與對稱軸的交點即為符合條件的點,據(jù)此可解;(3)過點作軸于點,交直線與點,當EF最大時面積的取得最大值,據(jù)此可解;(4)根據(jù)平行四邊形對邊平行且相等的性質可以得到存在點N使得以B,C,M,N為頂點的四邊形是平行四邊形.分三種情況討論.【詳解】解:(1)拋物線過點,解得:拋物線解析式為.(2)點,∴拋物線對稱軸為直線點在直線上,點,關于直線對稱,當點、、在同一直線上時,最?。畳佄锞€解析式為,∴C(0,-6),設直線解析式為,解得:直線:,,故答案為:.(3)過點作軸于點,交直線與點,設,則,當時,面積最大為,此時點坐標為.(4)存在點,使以點、、、為頂點的四邊形是平行四邊形.設N(x,y),M(,m),①四邊形CMNB是平行四邊形時,CM∥NB,CB∥MN,,∴x=,∴y==,∴N(,);②四邊形CNBM是平行四邊形時,CN∥BM,CM∥BN,,∴x=,∴y==∴N(,);③四邊形CNMB是平行四邊形時,CB∥MN,NC∥BM,,∴x=,∴y==∴N(,);點坐標為(,),(,),(,).【考點】本題考查二次函數(shù)與幾何圖形的綜合題,熟練掌握二次函數(shù)的性質,靈活運用數(shù)形結合思想得到坐標之間的關系是解題的關鍵.五、解答題1、(1)見解析;(2)【分析】(1)如圖所示,連接OA,由圓周角定理可得∠COA=90°,再由平行線的性質得到∠OAD+∠COA=180°,則∠OAD=90°,由此即可證明;(2)連接OB,過點O作OE⊥AB,垂足為E,先由等腰三角形的性質與三角形內角和定理求出∠COB=30°,則∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,則AB=.【詳解】解:(1)如圖所示,連接OA,∵∠CBA=45°,∴∠COA=90°,∵AD∥OC,∴∠OAD+∠COA=180°,∴∠OAD=90°,又∵點A在圓O上,∴AD是⊙O的切線;(2)連接OB,過點O作OE⊥AB,垂足為E,∵∠OCB=75°,OB=OC,∴∠OCB=∠OBC=75°,∴∠COB=180°-∠OCB-∠OBC=30°,由(1)證可得∠AOC=90°,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,又∵OE⊥AB,∴AE=BE,在Rt△AOE中,AO=2,∠OAE=30°,∴OE=AO=1,由勾股定理可得,,∴AB=.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年襄陽科技職業(yè)學院單招職業(yè)傾向性測試題庫含答案詳解
- 2026年羅定職業(yè)技術學院單招綜合素質考試題庫帶答案詳解
- 四川省南充市嘉陵一中2024-2025學年高二上學期第二次月考(11月)政治試題含解析政治答案
- 安徽消防面試題目及答案
- 鐵路運行面試題庫及答案
- 上海七十邁數(shù)字科技2026校園招聘備考題庫及答案詳解參考
- 2025年南寧市隆安縣殘聯(lián)公開招聘鄉(xiāng)鎮(zhèn)殘疾人專職委員備考題庫完整參考答案詳解
- 2025年三明地區(qū)備考題庫編內招聘24人備考題庫及參考答案詳解1套
- 2026年中共濰坊市委外事工作委員會辦公室所屬事業(yè)單位公開招聘工作人員備考題庫及一套答案詳解
- 2025年杭州市第三人民醫(yī)院公開招聘編外工作人員5人備考題庫完整答案詳解
- 2025年服飾時尚行業(yè)數(shù)字化轉型研究報告
- 機關單位績效考核系統(tǒng)建設方案
- 物流搬運工合同范本
- 2025年心肺復蘇指南課件
- 2025年湖北省宜昌市新質生產(chǎn)力發(fā)展研判:聚焦“3+2”主導產(chǎn)業(yè)打造長江經(jīng)濟帶新質生產(chǎn)力發(fā)展示范區(qū)圖
- 2025 小學二年級數(shù)學上冊解決問題審題方法課件
- 老年患者術后加速康復外科(ERAS)實施方案
- 2024-2025學年廣州市越秀區(qū)八年級上學期期末歷史試卷(含答案)
- 2025年餐飲與管理考試題及答案
- 2025事業(yè)單位考試公共基礎知識測試題及答案
- 借用公司簽合同協(xié)議
評論
0/150
提交評論