版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合測評考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,在菱形ABCD中,AB=5,AC=8,過點(diǎn)B作BE⊥CD于點(diǎn)E,則BE的長為()A. B. C.6 D.2、如圖,正方形ABCD中,AB=12,點(diǎn)E在邊BC上,BE=EC,將△DCE沿DE對折至△DFE,延長EF交邊AB于點(diǎn)G,連接DG、BF,給出以下結(jié)論:①△DAG≌△DFG;②BG=2AG;③BF//DE;④S△BEF=.其中所有正確結(jié)論的個(gè)數(shù)是()A.1 B.2 C.3 D.43、如圖,正方形ABCO和正方形DEFO的頂點(diǎn)A、E、O在同一直線上,且EF=,AB=3,給出下列結(jié)論:①∠COD=45°;②AE=3+;③CF=AD=;④S△COF+S△EOF=.期中正確的個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)4、將一張長方形紙片ABCD按如圖所示的方式折疊,AE、AF為折痕,點(diǎn)B、D折疊后的對應(yīng)點(diǎn)分別為、,若=10°,則∠EAF的度數(shù)為()A.40° B.45° C.50° D.55°5、下列說法中,不正確的是()A.四個(gè)角都相等的四邊形是矩形B.對角線互相平分且平分每一組對角的四邊形是菱形C.正方形的對角線所在的直線是它的對稱軸D.一組對邊相等,另一組對邊平行的四邊形是平行四邊形6、如圖,點(diǎn)E是長方形ABCD的邊CD上一點(diǎn),將ADE沿著AE對折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),若AD=10,AB=8,那么AE長為()A.5 B.12 C.5 D.137、在銳角△ABC中,∠BAC=60°,BN、CM為高,P為BC的中點(diǎn),連接MN、MP、NP,則結(jié)論:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④當(dāng)∠ABC=60°時(shí),MN∥BC,一定正確的有()A.①②③ B.②③④ C.①②④ D.①④8、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長交BE于點(diǎn)P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長為()A.5 B.2 C.2 D.39、如圖,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分別是AB,AC的中點(diǎn),連接DE,BE,點(diǎn)M在CB的延長線上,連接DM,若∠MDB=∠A,則四邊形DMBE的周長為()A.16 B.24 C.32 D.4010、如圖所示,正方形ABCD的面積為16,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對角線AC上有一點(diǎn)P,使PD+PE的和最小,則最小值為()A.2 B.3 C.4 D.6第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在平面直角坐標(biāo)系中,O是菱形ABCD對角線BD的中點(diǎn),AD∥x軸,AD=4,∠A=60°.將菱形ABCD繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)D落在x軸上,則旋轉(zhuǎn)后點(diǎn)C的對應(yīng)點(diǎn)的坐標(biāo)是_____________.2、如圖,在□中,⊥于點(diǎn),⊥于點(diǎn).若,,且的周長為40,則的面積為________.3、如圖,將長方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.4、一個(gè)矩形的兩條對角線所夾的銳角是60°,這個(gè)角所對的邊長為10cm,則該矩形的面積為_______.5、正方形ABCD的邊長是8cm,點(diǎn)M在BC邊上,且MC=2cm,P是正方形邊上的一個(gè)動(dòng)點(diǎn),連接PB交AM于點(diǎn)N,當(dāng)PB=AM時(shí),PN的長是_____.6、在直角墻角FOE中有張硬紙片正方形ABCD靠墻邊滑動(dòng),如圖所示,AD=2,A點(diǎn)沿墻往下滑動(dòng)到O點(diǎn)的過程中,正方形的中心點(diǎn)M到O的最小值是______.7、如圖,為了測量池塘兩岸A,B兩點(diǎn)之間的距離,可在AB外選一點(diǎn)C,連接AC和BC,再分別取AC、BC的中點(diǎn)D,E,連接DE并測量出DE的長,即可確定A、B之間的距離.若量得DE=15m,則A、B之間的距離為__________m8、如圖,在正方形ABCD中,點(diǎn)M,N為CD,BC上的點(diǎn),且DM=CN,AM與DN交于點(diǎn)P,連接AN,點(diǎn)Q為AN中點(diǎn),連接PQ,若AB=10,DM=4,則PQ的長為__________________.9、如圖,在矩形ABCD中,對角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別是AO、AD的中點(diǎn),若AB=6cm,BC=8cm,則EF=_____cm.10、如圖,在平行四邊形ABCD中,AB=4,BC=5,以點(diǎn)C為圓心,適當(dāng)長為半徑畫弧,交BC于點(diǎn)P,交CD于點(diǎn)Q,再分別以點(diǎn)P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點(diǎn)N,射線CN交BA的延長線于點(diǎn)E,則AE的長是_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,已知△ABC中,D是AB上一點(diǎn),AD=AC,AE⊥CD,垂足是E,F(xiàn)是BC的中點(diǎn),求證:BD=2EF.
2、如圖,在平行四邊形ABCD中,,點(diǎn)E、F分別是BC、AD的中點(diǎn).(1)求證:;(2)當(dāng)時(shí),在不添加輔助線的情況下,直接寫出圖中等于的2倍的所有角.3、如圖,已知正方形中,點(diǎn)是邊延長線上一點(diǎn),連接,過點(diǎn)作,垂足為點(diǎn),與交于點(diǎn).(1)求證:;(2)若,,求BG的長.4、在如圖所示的4×3網(wǎng)格中,每個(gè)小正方形的邊長均為1,正方形頂點(diǎn)叫格點(diǎn),連接兩個(gè)網(wǎng)格格點(diǎn)的線段叫網(wǎng)格線段.點(diǎn)A固定在格點(diǎn)上.(1)若a是圖中能用網(wǎng)格線段表示的最小無理數(shù),b是圖中能用網(wǎng)格線段表示的最大無理數(shù),則a=,b=,=;(2)請?jiān)诰W(wǎng)格中畫出頂點(diǎn)在格點(diǎn)上且邊長為的所有菱形ABCD,你畫出的菱形面積分別為,.5、如圖1,在平面直角坐標(biāo)系中,且;(1)試說明是等腰三角形;(2)已知.寫出各點(diǎn)的坐標(biāo):A(,),B(,),C(,).(3)在(2)的條件下,若一動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿線段BA向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止.①若的一條邊與BC平行,求此時(shí)點(diǎn)M的坐標(biāo);②若點(diǎn)E是邊AC的中點(diǎn),在點(diǎn)M運(yùn)動(dòng)的過程中,能否成為等腰三角形?若能,求出此時(shí)點(diǎn)M的坐標(biāo);若不能,請說明理由.-參考答案-一、單選題1、B【解析】【分析】根據(jù)菱形的性質(zhì)求得的長,進(jìn)而根據(jù)菱形的面積等于,即可求得的長【詳解】解:如圖,設(shè)的交點(diǎn)為,四邊形是菱形,,,在中,,菱形的面積等于故選B【點(diǎn)睛】本題考查了菱形的性質(zhì),掌握菱形的性質(zhì),求得的長是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定Rt△ADG≌Rt△FDG;②再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,即可判斷;③由△BEF是等腰三角形,證明∠EBF=∠DEC,;④結(jié)合①可得AG=GF,根據(jù)等高的兩個(gè)三角形的面積的比等于底與底的比即可求出三角形BEF的面積.【詳解】解:①由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,在Rt△ADG和Rt△FDG中,∴Rt△ADG≌Rt△FDG(HL),故①正確;②∵正方形邊長是12,∴BE=EC=EF=6,設(shè)AG=FG=x,則EG=x+6,BG=12?x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12?x)2,解得:x=4,∴AG=GF=4,BG=8,BG=2AG,故②正確;③∵EF=EC=EB,∴∠EFB=∠EBF,∵∠DEC=∠DEF,∠CEF=∠EFB+∠EBF,∴∠DEC=∠EBF,∴BF//DE,故③正確;④∵S△GBE=BE?BG=×6×8=24,∵GF=AG=4,EF=BE=6,∴,∴S△BEF=S△GBE=×24=,故④正確.綜上可知正確的結(jié)論的是4個(gè).故選:D.【點(diǎn)睛】本題考查了圖形的翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,平行線的判定,三角形的面積計(jì)算,有一定的難度.3、B【解析】【分析】根據(jù)∠COD=180°﹣∠AOC﹣∠DOE得到∠COD=45°,根據(jù)已知條件求出OE=2,得到AE=AO+OE=2+3=5,作DH⊥AB于H,作FG⊥CO交CO的延長線于G,根據(jù)勾股定理即可得到BD,根據(jù)三角形面積的關(guān)系計(jì)算即可;【詳解】①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故①正確;②∵EF,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故②錯(cuò)誤;③作DH⊥AB于H,作FG⊥CO交CO的延長線于G,則FG=1,CF,BH=3﹣1=2,DH=3+1=4,BD,故③錯(cuò)誤;④△COF的面積S△COF3×1,△EOF的面積S△EOF=()2=1S△COF+S△EOF=故④正確;正確的是①④;故選:B.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),勾股定理,準(zhǔn)確計(jì)算是解題的關(guān)鍵.4、A【解析】【分析】可以設(shè)∠EAD′=α,∠FAB′=β,根據(jù)折疊可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根據(jù)四邊形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【詳解】解:設(shè)∠EAD′=α,∠FAB′=β,根據(jù)折疊性質(zhì)可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四邊形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.則∠EAF的度數(shù)為40°.故選:A.【點(diǎn)睛】本題通過折疊變換考查學(xué)生的邏輯思維能力,解決此類問題,應(yīng)結(jié)合題意,最好實(shí)際操作圖形的折疊,易于找到圖形間的關(guān)系.5、D【解析】【分析】根據(jù)矩形的判定,正方形的性質(zhì),菱形和平行四邊形的判定對各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:A、四個(gè)角都相等的四邊形是矩形,說法正確;B、正方形的對角線所在的直線是它的對稱軸,說法正確;C、對角線互相平分且平分每一組對角的四邊形是菱形,說法正確;D、一組對邊相等且平行的四邊形是平行四邊形,原說法錯(cuò)誤;故選:D.【點(diǎn)睛】本題主要考查特殊平行四邊形的判定與性質(zhì),熟練掌握特殊平行四邊形相關(guān)的判定與性質(zhì)是解答本題的關(guān)鍵.6、C【解析】【分析】根據(jù)矩形的性質(zhì),折疊的性質(zhì),勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴,,,∵將△ADE沿著AE對折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),∴,,∴,∴,∵,∴,∴,∴,∴,故選:C.【點(diǎn)睛】本題考查了翻折變換,矩形的性質(zhì),勾股定理等知識,解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題.7、C【解析】【分析】利用直角三角形斜邊上的中線的性質(zhì)即可判定①正確;利用含30度角的直角三角形的性質(zhì)即可判定②正確,由勾股定理即可判定③錯(cuò)誤;由等邊三角形的判定及性質(zhì)、三角形中位線定理即可判定④正確.【詳解】∵CM、BN分別是高∴△CMB、△BNC均是直角三角形∵點(diǎn)P是BC的中點(diǎn)∴PM、PN分別是兩個(gè)直角三角形斜邊BC上的中線∴故①正確∵∠BAC=60゜∴∠ABN=∠ACM=90゜?∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正確在Rt△ABN中,由勾股定理得:故③錯(cuò)誤當(dāng)∠ABC=60゜時(shí),△ABC是等邊三角形∵CM⊥AB,BN⊥AC∴M、N分別是AB、AC的中點(diǎn)∴MN是△ABC的中位線∴MN∥BC故④正確即正確的結(jié)論有①②④故選:C【點(diǎn)睛】本題考查了直角三角形斜邊上中線的性質(zhì),含30度角的直角三角形的性質(zhì),等邊三角形的判定及性質(zhì),勾股定理,三角形中位線定理等知識,掌握這些知識并正確運(yùn)用是解題的關(guān)鍵.8、D【解析】【分析】過點(diǎn)D作DH⊥BC,交BC的延長線于點(diǎn)H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結(jié)果.【詳解】過點(diǎn)D作DH⊥BC,交BC的延長線于點(diǎn)H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練運(yùn)用這些性質(zhì)解決問題.9、C【解析】【分析】由中點(diǎn)的定義可得AE=CE,AD=BD,根據(jù)三角形中位線的性質(zhì)可得DE//BC,DE=BC,根據(jù)平行線的性質(zhì)可得∠ADE=∠ABC=90°,利用ASA可證明△MBD≌△EDA,可得MD=AE,DE=MB,即可證明四邊形DMBE是平行四邊形,可得MD=BE,進(jìn)而可得四邊形DMBE的周長為2DE+2MD=BC+AC,即可得答案.【詳解】∵D,E分別是AB,AC的中點(diǎn),∴AE=CE,AD=BD,DE為△ABC的中位線,∴DE//BC,DE=BC,∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD和△EDA中,,∴△MBD≌△EDA,∴MD=AE,DE=MB,∵DE//MB,∴四邊形DMBE是平行四邊形,∴MD=BE,∵AC=18,BC=14,∴四邊形DMBE的周長=2DE+2MD=BC+AC=18+14=32.故選:C.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì)、三角形中位線的性質(zhì)及平行四邊形的判定與性質(zhì),三角形中位線平行于第三邊且等于第三邊的一半;有一組對邊平行且相等的四邊形是平行四邊形;熟練掌握相關(guān)性質(zhì)及判定定理是解題關(guān)鍵.10、C【解析】【分析】先求得正方形的邊長,依據(jù)等邊三角形的定義可知BE=AB=4,連接BP,依據(jù)正方形的對稱性可知PB=PD,則PE+PD=PE+BP.由兩點(diǎn)之間線段最短可知:當(dāng)點(diǎn)B、P、E在一條直線上時(shí),PE+PD有最小值,最小值為BE的長.【詳解】解:連接BP.∵四邊形ABCD為正方形,面積為16,∴正方形的邊長為4.∵△ABE為等邊三角形,∴BE=AB=4.∵四邊形ABCD為正方形,∴△ABP與△ADP關(guān)于AC對稱.∴BP=DP.∴PE+PD=PE+BP.由兩點(diǎn)之間線段最短可知:當(dāng)點(diǎn)B、P、E在一條直線上時(shí),PE+PD有最小值,最小值=BE=4.故選:C.【點(diǎn)睛】本題考查的是等邊三角形的性質(zhì)、正方形的性質(zhì)和軸對稱—最短路線問題,熟知“兩點(diǎn)之間,線段最短”是解答此題的關(guān)鍵.二、填空題1、或##或【解析】【分析】分當(dāng)D落在x軸正半軸時(shí)和當(dāng)D落在x軸負(fù)半軸時(shí),兩種情況討論求解即可.【詳解】解:如圖1所示,當(dāng)D落在x軸正半軸時(shí),∵O是菱形ABCD對角線BD的中點(diǎn),∴AO⊥DO,∴當(dāng)D落在x軸正半軸時(shí),A點(diǎn)在y軸正半軸,∴同理可得A、B、C三點(diǎn)均在坐標(biāo)軸上,且點(diǎn)C在y軸負(fù)半軸,∵∠BAD=60°,∴∠OAD=30°,∴,∴,∴點(diǎn)C的坐標(biāo)為(0,);如圖2所示,當(dāng)D落在x軸負(fù)半軸時(shí),同理可得,∴點(diǎn)C的坐標(biāo)為(0,);∴綜上所述,點(diǎn)C的坐標(biāo)為(0,)或(0,),故答案為:(0,)或(0,).【點(diǎn)睛】本題主要考查了菱形的性質(zhì),坐標(biāo)與圖形,含30度角的直角三角形的性質(zhì),勾股定理,熟練掌握菱形的性質(zhì)是解題的關(guān)鍵.2、48【解析】【分析】根據(jù)題意可得:,再由平行四邊形的面積公式整理可得:,根據(jù)兩個(gè)等式可得:,代入平行四邊形面積公式即可得.【詳解】解:∵?ABCD的周長:,∴,∵于E,于F,,,∴,整理得:,∴,∴,∴?ABCD的面積:,故答案為:48.【點(diǎn)睛】題目主要考查平行四邊形的性質(zhì)及運(yùn)用方程思想進(jìn)行求解線段長,理解題意,熟練運(yùn)用平行四邊形的性質(zhì)及其面積公式是解題關(guān)鍵.3、25°【解析】【分析】利用翻折變換的性質(zhì)即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點(diǎn)睛】本題考查了折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.4、【解析】【分析】先根據(jù)矩形的性質(zhì)證明△ABC是等邊三角形,得到,則,然后根據(jù)勾股定理求出,最后根據(jù)矩形面積公式求解即可.【詳解】:如圖所示,在矩形ABCD中,∠AOB=60°,,∵四邊形ABCD是矩形,∴∠ABC=90°,,∴△ABC是等邊三角形,∴,∴,∴,∴,故答案為:.【點(diǎn)睛】本題主要考查了矩形的性質(zhì),勾股定理,等邊三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握矩形的性質(zhì).5、5cm或5.2cm【解析】【分析】當(dāng)點(diǎn)P在BC上,AM>BP,當(dāng)點(diǎn)P在AB上,AM>BP,當(dāng)點(diǎn)P在CD上,如圖,根據(jù)PB=AM,可證Rt△ABM≌Rt△BCP(HL),可證BP⊥AM,根據(jù)勾股定理可求AM=,根據(jù)三角形面積可求,可求PN=BP-BN;當(dāng)點(diǎn)P在AD上,如圖,可證Rt△ABM≌Rt△BAP(HL),再證AN=PN=BN=MN,根據(jù)AM=BP=10cm,可求PN=cm,【詳解】解:當(dāng)點(diǎn)P在BC上,AM>BP,當(dāng)點(diǎn)P在AB上,AM>BP,不合題意,舍去;當(dāng)點(diǎn)P在CD上,如圖,∵PB=AM∵四邊形ABCD為正方形,∴AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC,∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,∴BP⊥AM,∵M(jìn)C=2cm,∴BM=BC-MC=8-2=6cm,∴AM=,∴,∴,∴PN=BP-BN=AM-BN=10-4.8=5.2cm,當(dāng)點(diǎn)P在AD上,如圖,在Rt△ABM和Rt△BAP中,,∴Rt△ABM≌Rt△BAP(HL),∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,∴AN=BN,∵AD∥BC,∴∠PAN=∠NMB=∠APN,∴AN=PN=BN=MN,∵AM=BP=10cm,∴PN=cm,∴PN的長為5cm或5.2cm.故答案為5cm或5.2cm.【點(diǎn)睛】本題考查正方形的性質(zhì),三角形全等判定與性質(zhì),勾股定理,等腰三角形判定與性質(zhì),分類討論思想,掌握正方形的性質(zhì),三角形全等判定與性質(zhì),勾股定理,等腰三角形判定與性質(zhì),分類討論思想是解題關(guān)鍵.6、2【解析】【分析】取的中點(diǎn)為,連接,根據(jù)直角三角形的性質(zhì)求出OG和MG的長,然后根據(jù)兩點(diǎn)之間線段最短即可求解.【詳解】解:取的中點(diǎn)為,連接,為正方形,,,為中點(diǎn),,又為直角三角形,,的軌跡是以為圓心的圓弧,最小值為當(dāng)三點(diǎn)共線時(shí),即,故答案為:2.【點(diǎn)睛】本題考查了正方形的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,以及兩點(diǎn)之間線段最短等知識,正確作出輔助線是解答本題的關(guān)鍵.7、30【解析】【分析】根據(jù)三角形中位線的性質(zhì)解答即可.【詳解】解:∵點(diǎn)D,E分別是AC,BC的中點(diǎn),∴DE是△ABC的中位線,∴AB=2DE=30m.故填30.【點(diǎn)睛】本題主要考查的是三角形中位線定理,掌握三角形的中位線平行于第三邊且等于第三邊的一半是解答本題的關(guān)鍵.8、【解析】【分析】由△ADM與△DCN全等,得出∠CDN=∠DAM,從而得到∠DPM=90°,由此∠APN=90°,再由直角三角形斜邊的中線的性質(zhì)求出PQ.【詳解】解:在正方形ABCD中,AD=CD,∠ADC=∠DCN=90°,在△ADM與△DCN中,∵AD=CD,DM=CN,∠ADC=∠DCN,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∴∠DMA=∠CND,在△DPM中,∠PDM+∠PMD=90°,∴∠DPM=90°,∵∠DPM=∠APN,∴△ANP為直角三角形,AN為直角三角形的斜邊,由直角三角形的性質(zhì)得PQ=AN,在△ANB中,AN==2,∴PQ=,故答案為:.【點(diǎn)睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形斜邊上的中線,勾股定理等知識,解題的關(guān)鍵是熟練掌握正方形的性質(zhì).9、####【解析】【分析】根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵點(diǎn)E、F分別是AO、AD的中點(diǎn),∴EF=OD=2.5cm,故答案為:2.5.【點(diǎn)睛】本題考查了矩形的性質(zhì)的應(yīng)用,勾股定理,三角形中位線的應(yīng)用,解本題的關(guān)鍵是求出OD長及證明EF=OD.10、1【解析】【分析】根據(jù)基本作圖,得到EC是∠BCD的平分線,由AB∥CD,得到∠BEC=∠ECD=∠ECB,從而得到BE=BC,利用線段差計(jì)算即可.【詳解】根據(jù)基本作圖,得到EC是∠BCD的平分線,∴∠ECD=∠ECB,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠BEC=∠ECD,∴∠BEC=∠ECB,∴BE=BC=5,∴AE=BE-AB=5-4=1,故答案為:1.【點(diǎn)睛】本題考查了角的平分線的尺規(guī)作圖,等腰三角形的判定,平行線的性質(zhì),平行四邊形的性質(zhì),熟練掌握尺規(guī)作圖,靈活運(yùn)用等腰三角形的判定定理是解題的關(guān)鍵.三、解答題1、見解析.【分析】先證明再證明EF是△CDB的中位線,從而可得結(jié)論.【詳解】證明:∵AD=AC,AE⊥CD∴CE=ED∵F是BC的中點(diǎn)∴EF是△CDB的中位線∴BD=2EF【點(diǎn)睛】本題考查的是等腰三角形的性質(zhì),三角形的中位線的性質(zhì),掌握“三角形的中位線平行于第三邊且等于第三邊的一半”是解題的關(guān)鍵.2、(1)證明見解析;(2)【分析】(1)先證明再證明從而可得結(jié)論;(2)證明是等邊三角形,再分別求解從而可得答案.【詳解】證明(1)平行四邊形ABCD中,,點(diǎn)E、F分別是BC、AD的中點(diǎn),(2),是等邊三角形,四邊形是平行四邊形,而,所以等于的2倍的角有:【點(diǎn)睛】本題考查的是全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),平行四邊形的性質(zhì),證明“是等邊三角形”是解(2)的關(guān)鍵.3、(1)見解析;(2)【分析】(1)由正方形的性質(zhì)可得,,由的余角相等可得∠CBG=∠CDE,進(jìn)而證明△BCG≌△DCE,從而證明CG=CE;(2)證明正方形的性質(zhì)可得,結(jié)合已知條件即可求得,進(jìn)而勾股定理即可求得的長【詳解】(1)∵BF⊥DE∴∠BFE=90°∵四邊形ABCD是正方形∴∠DCE=90°,∴∠CBG+∠E=∠CDE+∠E,∴∠CBG=∠CDE∴△BCG≌△DCE∴CG=CE(2)∵,且,,∴∵CG=CE∴,在中,【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 質(zhì)量保證協(xié)議書
- 裝修返點(diǎn)協(xié)議書
- 自然災(zāi)害協(xié)議書
- 總承包合同范本
- 屋基調(diào)換協(xié)議書
- 藝校合作協(xié)議書
- 小孩周歲協(xié)議書
- 舞團(tuán)合伙協(xié)議書
- 閘機(jī)購買合同范本
- 英語短語協(xié)議書
- 《安全生產(chǎn)法規(guī)培訓(xùn)》課件
- 刑法學(xué)知到智慧樹章節(jié)測試課后答案2024年秋上海財(cái)經(jīng)大學(xué)
- 2025屆河北省石家莊市普通高中學(xué)校畢業(yè)年級教學(xué)質(zhì)量摸底檢測英語試卷(含答案解析)
- 老年護(hù)理??谱o(hù)士競聘案例
- 偉大的《紅樓夢》智慧樹知到期末考試答案章節(jié)答案2024年北京大學(xué)
- AQ2059-2016 磷石膏庫安全技術(shù)規(guī)程
- 噴涂車間操作工安全操作規(guī)程模版(三篇)
- 節(jié)水型小區(qū)總結(jié)匯報(bào)
- 2023中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)-老年人誤吸的預(yù)防
- 一年級數(shù)學(xué)重疊問題練習(xí)題
- 事業(yè)單位專業(yè)技術(shù)人員崗位工資標(biāo)準(zhǔn)表
評論
0/150
提交評論