綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》專題訓(xùn)練試卷(含答案詳解)_第1頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》專題訓(xùn)練試卷(含答案詳解)_第2頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》專題訓(xùn)練試卷(含答案詳解)_第3頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》專題訓(xùn)練試卷(含答案詳解)_第4頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》專題訓(xùn)練試卷(含答案詳解)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》專題訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、下列命題正確的是()A.對角線相等的四邊形是平行四邊形 B.對角線相等的四邊形是矩形C.對角線互相垂直的平行四邊形是菱形 D.對角線互相垂直且相等的四邊形是正方形2、如圖,在平面直角坐標(biāo)系中,點(diǎn)A是x軸正半軸上的一個動點(diǎn),點(diǎn)C是y軸正半軸上的點(diǎn),于點(diǎn)C.已知,.點(diǎn)B到原點(diǎn)的最大距離為()A.22 B.18 C.14 D.103、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長交BE于點(diǎn)P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長為()A.5 B.2 C.2 D.34、如圖,把一張長方形紙片ABCD沿對角線AC折疊,點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)B′,AB′與DC相交于點(diǎn)E,則下列結(jié)論正確的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE5、已知三角形三邊長分別為7cm,8cm,9cm,作三條中位線組成一個新的三角形,同樣方法作下去,一共做了五個新的三角形,則這五個新三角形的周長之和為()A.46.5cm B.22.5cm C.23.25cm D.以上都不對第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在一張矩形紙片ABCD中,AB=30cm,將紙片對折后展開得到折痕EF.點(diǎn)P為BC邊上任意一點(diǎn),若將紙片沿著DP折疊,使點(diǎn)C恰好落在線段EF的三等分點(diǎn)上,則BC的長等于_________cm.2、已知長方形ABCD中,AB=4,BC=10,M為BC中點(diǎn),P為AD上的動點(diǎn),則以B、M、P為頂點(diǎn)組成的等腰三角形的底邊長是______________________.3、平面直角坐標(biāo)系中,四邊形ABCD的頂點(diǎn)坐標(biāo)分別是A(-3,0),B(0,2),C(3,0),D(0,-2),則四邊形ABCD是__________.4、如圖,每個小正方形的邊長都為1,△ABC是格點(diǎn)三角形,點(diǎn)D為AC的中點(diǎn),則線段BD的長為_____.5、如圖,△ABC中,AC=BC=3,AB=2,將它沿AB翻折得到△ABD,點(diǎn)P、E、F分別為線段AB、AD、DB上的動點(diǎn),則PE+PF的最小值是_____.三、解答題(5小題,每小題10分,共計50分)1、△ABC和△GEF都是等邊三角形.問題背景:如圖1,點(diǎn)E與點(diǎn)C重合且B、C、G三點(diǎn)共線.此時△BFC可以看作是△AGC經(jīng)過平移、軸對稱或旋轉(zhuǎn)得到.請直接寫出得到△BFC的過程.遷移應(yīng)用:如圖2,點(diǎn)E為AC邊上一點(diǎn)(不與點(diǎn)A,C重合),點(diǎn)F為△ABC中線CD上一點(diǎn),延長GF交BC于點(diǎn)H,求證:.聯(lián)系拓展:如圖3,AB=12,點(diǎn)D,E分別為AB、AC的中點(diǎn),M為線段BD上靠近點(diǎn)B的三等分點(diǎn),點(diǎn)F在射線DC上運(yùn)動(E、F、G三點(diǎn)按順時針排列).當(dāng)最小時,則△MDG的面積為_______.2、如圖,中,對角線AC、BD相交于點(diǎn)O,點(diǎn)E,F(xiàn),G,H分別是OA、OB、OC、OD的中點(diǎn),順次連接EFGH.(1)求證:四邊形EFGH是平行四邊形(2)若的周長為2(AB+BC)=32,則四邊形EFGH的周長為__________3、如圖,在四邊形ABCD中,ABDC,AB=AD,對角線AC,BD交于點(diǎn)O,AC平分∠BAD,過點(diǎn)C作CE⊥AB交AB的延長線于點(diǎn)E,連接OE.(1)求證:四邊形ABCD是菱形;(2)若AB=,BD=2,求OE的長.4、如圖,將直角三角形分割成一個正方形和兩對全等的直角三角形,在Rt△ABC中,∠ACB=90°,四邊形FCEO是正方形,Rt△AOF≌Rt△AOD,Rt△BOE≌Rt△BOD.若設(shè)正方形的邊長為x,則可以探究x與直角三角形ABC的三邊a,b,c之間的關(guān)系.探究:∵Rt△BOE≌Rt△BOD,∴BD=BE=a﹣x,∵Rt△AOF≌Rt△AOD,∴AD=AF=b﹣x,∵AB=BD+AD,∴a﹣x+b﹣x=c,∴x=.(1)小穎同學(xué)發(fā)現(xiàn)利用S△ABC=S△AOB+S△AOC+S△BOC也可以探究正方形的邊長x與直角三角形ABC的三邊a,b,c之間的關(guān)系.請你根據(jù)小穎的思路,完成她的探究過程.(2)請你結(jié)合探究和小穎的解答過程驗(yàn)證勾股定理.

5、在ABC中,D、E、F分別是AB、AC、BC的中點(diǎn),連接DE、DF.(1)如圖1,若AC=BC,求證:四邊形DECF為菱形;(2)如圖2,過C作CGAB交DE延長線于點(diǎn)G,連接EF,AG,在不添加任何輔助線的情況下,寫出圖中所有與ADG面積相等的平行四邊形.-參考答案-一、單選題1、C【解析】【分析】根據(jù)平行四邊形、矩形、菱形以及正方形的判定方法,對選項(xiàng)逐個判斷即可.【詳解】解:A、對角線互相平分的四邊形是平行四邊形,選項(xiàng)錯誤,不符合題意;B、對角線相等平行四邊形是矩形,選項(xiàng)錯誤,不符合題意;C、對角線互相垂直的平行四邊形是菱形,選項(xiàng)正確,符合題意;D、對角線互相垂直且相等的平行四邊形是正方形,選項(xiàng)錯誤,不符合題意;故選C【點(diǎn)睛】此題考查了平行四邊形、矩形、菱形以及正方形的判定,掌握它們的判定方法是解題的關(guān)鍵.2、B【解析】【分析】首先取AC的中點(diǎn)E,連接BE,OE,OB,可求得OE與BE的長,然后由三角形三邊關(guān)系,求得點(diǎn)B到原點(diǎn)的最大距離.【詳解】解:取AC的中點(diǎn)E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點(diǎn)O,E,B不在一條直線上,則OB<OE+BE=18.若點(diǎn)O,E,B在一條直線上,則OB=OE+BE=18,∴當(dāng)O,E,B三點(diǎn)在一條直線上時,OB取得最大值,最大值為18.故選:B【點(diǎn)睛】此題考查了直角三角形斜邊上的中線的性質(zhì)以及三角形三邊關(guān)系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.3、D【解析】【分析】過點(diǎn)D作DH⊥BC,交BC的延長線于點(diǎn)H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結(jié)果.【詳解】過點(diǎn)D作DH⊥BC,交BC的延長線于點(diǎn)H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練運(yùn)用這些性質(zhì)解決問題.4、D【解析】【分析】根據(jù)翻折變換的性質(zhì)可得∠BAC=∠CAB′,根據(jù)兩直線平行,內(nèi)錯角相等可得∠BAC=∠ACD,從而得到∠ACD=∠CAB′,然后根據(jù)等角對等邊可得AE=CE,從而得解.【詳解】解:∵矩形紙片ABCD沿對角線AC折疊,點(diǎn)B的對應(yīng)點(diǎn)為B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴結(jié)論正確的是D選項(xiàng).故選D.【點(diǎn)睛】本題考查了翻折變換的性質(zhì),平行線的性質(zhì),矩形的對邊互相平行,等角對等邊的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.5、C【解析】【分析】如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,則,,,即可得到△DEF的周長,由此即可求出其他四個新三角形的周長,最后求和即可.【詳解】解:如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,∴,,,∴△DEF的周長,同理可得:△GHI的周長,∴第三次作中位線得到的三角形周長為,∴第四次作中位線得到的三角形周長為∴第三次作中位線得到的三角形周長為∴這五個新三角形的周長之和為,故選C.【點(diǎn)睛】本題主要考查了三角形中位線定理,解題的關(guān)鍵在于能夠熟練掌握三角形中位線定理.二、填空題1、或【解析】【分析】分為將紙片沿縱向?qū)φ?,和沿橫向?qū)φ蹆煞N情況,利用折疊的性質(zhì),以及勾股定理解答即可【詳解】如圖:當(dāng)將紙片沿縱向?qū)φ鄹鶕?jù)題意可得:為的三等分點(diǎn)在中有如圖:當(dāng)將紙片沿橫向?qū)φ鄹鶕?jù)題意得:,在中有為的三等分點(diǎn)故答案為:或【點(diǎn)睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),以及勾股定理解直角三角形,解題關(guān)鍵是分兩種情況作出折痕,考慮問題應(yīng)全面,不應(yīng)丟解.2、5或或【解析】【分析】分三種情況:①當(dāng)BP=PM時,點(diǎn)P在BM的垂直平分線上,取BM的中點(diǎn)N,過點(diǎn)N作NP⊥BM交AD于P,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理即可求解;②當(dāng)BM=PM=5時,當(dāng)∠PMB為銳角如圖2時,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理可得MN=3,從而BN=2,再由勾股定理可得BP的長;③當(dāng)BM=PM=5時,當(dāng)∠PMB為鈍角如圖3時,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理MN=3,從而BN=8,再由勾股定理可得BP的長;即可求解.【詳解】解:BC=10,M為BC中點(diǎn),∴BM=5,當(dāng)△BMP為等腰三角形時,分三種情況:①當(dāng)BP=PM時,點(diǎn)P在AM的垂直平分線上,取BM的中點(diǎn)N,過點(diǎn)N作NP⊥AD交AD于P,如圖1所示:則△PBM是等腰三角形∴底邊BM的長為5②當(dāng)BM=PM=5時,當(dāng)∠PMB為銳角如圖2時,則四邊形ABNP是矩形,∴PN=AB=4,∴MN=∴在Rt△PBN中,③當(dāng)BM=PM=5時,當(dāng)∠PMB為鈍角如圖3時,則四邊形ABNP是矩形,得AB=PN=4,同理可得∴在Rt△PBN中,綜上,以B、M、P為頂點(diǎn)組成的等腰三角形的底邊長是:5或或故答案為:5或或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、勾股定理以及分類討論等知識,熟練掌握矩形的性質(zhì),進(jìn)行分類討論是解題的關(guān)鍵.3、菱形【解析】【分析】先在坐標(biāo)系中畫出四邊形ABCD,由A、B、C、D的坐標(biāo)即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【詳解】解:圖象如圖所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四邊形ABCD為平行四邊形,∵AC⊥BD,∴四邊形ABCD為菱形,故答案為:菱形.【點(diǎn)睛】本題主要考查了菱形的判定,坐標(biāo)與圖形,解題的關(guān)鍵在于能夠熟練掌握菱形的判定條件.4、##【解析】【分析】根據(jù)勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判斷出△ABC是直角三角形,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:,,,,∴∠ABC=90°,∵點(diǎn)D為AC的中點(diǎn),∴BD為AC邊上的中線,∴BD=AC,故答案為:【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,勾股定理逆定理的應(yīng)用,判斷出△ABC是直角三角形是解題的關(guān)鍵.5、##【解析】【分析】首先證明四邊四邊形ABCD是菱形,作出F關(guān)于AB的對稱點(diǎn)M,再過M作ME′⊥AD,交AB于點(diǎn)P′,此時P′E′+P′F最小,求出ME即可.【詳解】解:作出F關(guān)于AB的對稱點(diǎn)M,再過M作ME′⊥AD,交AB于點(diǎn)P′,此時P′E′+P′F最小,此時P′E′+P′F=ME′,過點(diǎn)A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四邊形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小為.故答案為:.【點(diǎn)睛】本題考查翻折變換,等腰三角形的性質(zhì),軸對稱?最短問題等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.三、解答題1、(1)以點(diǎn)C為旋轉(zhuǎn)中心將逆時針旋轉(zhuǎn)就得到;(2)見解析;(3).【分析】(1)只需要利用SAS證明△BCF≌△ACG即可得到答案;(2)法一:以為邊作,與的延長線交于點(diǎn)K,如圖,先證明,然后證明,得到,則,過點(diǎn)F作FM⊥BC于M,求出,即可推出,則,即:;法二:過F作,.先證明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性質(zhì)求出,再證明得到,則;(3)如圖3-1所示,連接,GM,AG,先證明△ADE是等邊三角形,得到DE=AE,即可證明得到,即點(diǎn)G在的角平分線所在直線上運(yùn)動.過G作,則,最小即是最小,故當(dāng)M、G、P三點(diǎn)共線時,最?。蝗鐖D3-2所示,過點(diǎn)G作GQ⊥AB于Q,連接DG,求出DM和QG的長即可求解.【詳解】(1)∵△ABC和△GEF都是等邊三角形,∴BC=AC,CF=CG,∠ACB=∠FCG=60°,∴∠ACB+∠ACF=∠FCG+∠ACF,∴∠FCB=∠GCA,∴△BCF≌△ACG(SAS),∴△BFC可以看作是△AGC繞點(diǎn)C逆時針旋轉(zhuǎn)60度所得;(2)法一:證明:以為邊作,與的延長線交于點(diǎn)K,如圖,∵和均為等邊三角形,∴,∠GFE=60°,∴,∴∠EFH+∠ACB=180°,∴,∵,∴.∵是等邊的中線,∴,∴,∴∴.在與中,∴,∴,∴,過點(diǎn)F作FM⊥BC于M,∴KM=CM,∵∠K=30°,∴∴,∴,∴,即:;法二證明:過F作,.∴是等邊的中線,∴,,∴△FCN≌△FCM(AAS),F(xiàn)C=2FN,∴CM=CN,,同法一,.在與中,∴∴,∴;(3)如圖3-1所示,連接,GM,AG,∵D,E分別是AB,AC的中點(diǎn),∴DE是△ABC的中位線,CD⊥AB,∴DE∥BC,∠CDA=90°,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴△ADE是等邊三角形,∠FDE=30°,∴DE=AE,∵△GEF是等邊三角形,∴EF=EG,∠GEF=60°,∴∠AEG=∠AED+∠DEG=∠FEG+∠DEG=∠FED,∴∴,即點(diǎn)G在的角平分線所在直線上運(yùn)動.過G作,則,∴最小即是最小,∴當(dāng)M、G、P三點(diǎn)共線時,最小如圖3-2所示,過點(diǎn)G作GQ⊥AB于Q,連接DG,∴QG=PG,∵∠MAP=60°,∠MPA=90°,∴∠AMP=30°,∴AM=2AP,∵D是AB的中點(diǎn),AB=12,∴AD=BD=6,∵M(jìn)是BD靠近B點(diǎn)的三等分點(diǎn),∴MD=4,∴AM=10,∴AP=5,又∵∠PAG=30°,∴AG=2GP,∵,∴∴∴.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì)與判定,等邊三角形的性質(zhì)與判定,含30度角的直角三角形的性,勾股定理,解題的關(guān)鍵在于能夠正確作出輔助線求解.2、(1)見解析;(2)16【分析】(1)根據(jù)平行四邊形的性質(zhì),可得OA=OC,OB=OD,從而得到OE=OG,OF=OH,即可求證;(2)根據(jù)三角形中位線定理,可得,從而得到,再由(1)四邊形EFGH是平行四邊形,即可求解.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵點(diǎn)E、F、G、H分別是OA、OB、OC、OD的中點(diǎn),∴,∴OE=OG,OF=OH,∴四邊形EFGH是平行四邊形;(2)∵點(diǎn)E、F、G、H分別是OA、OB、OC、OD的中點(diǎn),∴,∴,∵的周長為2(AB+BC)=32,∴,∴,由(1)知:四邊形EFGH是平行四邊形,∴四邊形EFGH的周長為.【點(diǎn)睛】本題主要考查了平行四邊形的判定和性質(zhì),三角形的中位線定理,熟練掌握平行四邊形的判定和性質(zhì)定理,三角形的中位線定理是解題的關(guān)鍵.3、(1)見解析;(2)2【分析】(1)先判斷出∠OAB=∠DCA,進(jìn)而判斷出∠DAC=∠DCA,得出CD=AD=AB,即可得出結(jié)論;(2)先判斷出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出結(jié)論.【詳解】(1)證明:∵ABCD,∴∠OAB=∠DCA,∵AC為∠DAB的平分線,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵ABCD,∴四邊形ABCD是平行四邊形,∵AD=AB,∴平行四邊形ABCD是菱形;(2)解:∵四邊形ABCD是菱形,∴O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論