版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
廣東省四會市中考數(shù)學強化訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點C作⊙O的切線,交AB的延長線于點D.設∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°2、正方形的邊長為4,若邊長增加x,那么面積增加y,則y關于x的函數(shù)表達式為(
)A. B. C. D.3、二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,由圖象可知該拋物線與x軸的交點坐標是(
)A.(﹣1,0)和(5,0) B.(1,0)和(5,0)C.(0,﹣1)和(0,5) D.(0,1)和(0,5)4、下列事件中,是必然事件的是()A.剛到車站,恰好有車進站B.在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球C.打開九年級上冊數(shù)學教材,恰好是概率初步的內(nèi)容D.任意畫一個三角形,其外角和是360°5、若的圓心角所對的弧長是,則此弧所在圓的半徑為()A.1 B.2 C.3 D.4二、多選題(5小題,每小題3分,共計15分)1、拋物線y=ax2+bx+c(a≠0)的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論中正確的是()A.b2﹣4ac<0B.當x>﹣1時,y隨x增大而減小C.a(chǎn)+b+c<0D.若方程ax2+bx+c-m=0沒有實數(shù)根,則m>2E.3a+c<02、下列各組圖形中,由左邊變成右邊的圖形,分別進行了平移、旋轉(zhuǎn)、軸對稱、中心對稱等變換,其中進行了旋轉(zhuǎn)變換的是(
)組,進行軸對稱變換的是(
).A. B. C. D.3、在中,,,且關于x的方程有兩個相等的實數(shù)根,以下結(jié)論正確的是(
)A.AC邊上的中線長為1 B.AC邊上的高為C.BC邊上的中線長為 D.外接圓的半徑是24、(多選)若數(shù)使關于的一元二次方程有兩個不相等的實數(shù)解,且使關于的分式方程的解為非負整數(shù),則滿足條件的的值為(
)A.1 B.3 C.5 D.75、如圖,PA、PB是的切線,切點分別為A、B,BC是的直徑,PO交于E點,連接AB交PO于F,連接CE交AB于D點.下列結(jié)論正確的是(
)A.CE平分∠ACB B. C.E是△PAB的內(nèi)心 D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、在Rt△ABC中,∠ACB=90°,AC=AB,點E、F分別是邊CA、CB的中點,已知點P在線段EF上,聯(lián)結(jié)AP,將線段AP繞點P逆時針旋轉(zhuǎn)90°得到線段DP,如果點P、D、C在同一直線上,那么tan∠CAP=_______.2、一個圓錐的底面半徑r=6,高h=8,則這個圓錐的側(cè)面積是_____.3、第24屆世界冬季奧林匹克運動會,于2022年2月4日在中國北京市和河北省張家口市聯(lián)合舉行,其會徽為“冬夢”,這是中國歷史上首次舉辦冬季奧運會.如圖,是一幅印有北京冬奧會會徽且長為3m,寬為2m的長方形宣傳畫,為測量宣傳畫上會徽圖案的面積,現(xiàn)將宣傳畫平鋪,向長方形宣傳畫內(nèi)隨機投擲骰子(假設骰子落在長方形內(nèi)的每一點都是等可能的),經(jīng)過大量重復投擲試驗,發(fā)現(xiàn)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,由此可估計宣傳畫上北京冬奧會會徽圖案的面積約為______.4、如圖,在中,,,.繞點B順時針方向旋轉(zhuǎn)45°得到,點A經(jīng)過的路徑為弧,點C經(jīng)過的路徑為弧,則圖中陰影部分的面積為______.(結(jié)果保留)5、如圖,在⊙O中,=,AB=10,BC=12,D是上一點,CD=5,則AD的長為______.四、簡答題(2小題,每小題10分,共計20分)1、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?2、在矩形中,于點,點是邊上一點.(1)若平分,交于點,PF⊥BD,如圖(1),證明四邊形是菱形;(2)若,如圖(2),求證:.五、解答題(4小題,每小題10分,共計40分)1、如圖,等腰直角三角形,,,延長至E,使得,以為直角邊作,,.(1)若以每秒1個單位的速度沿向右運動,當點E到達點C時停止運動,直接寫出在運動過程中與重疊部分面積S與運動時間t(單位:秒)的函數(shù)關系式;(2)點M為線段的中點,當(1)中的頂點E運動到點C后,將繞著點C繼續(xù)順時針旋轉(zhuǎn)得到,點P是直線上一動點,連接,求的最小值.2、已知拋物線y=mx2-2mx-3.(1)若拋物線的頂點的縱坐標是-2,求此時m的值;(2)已知當m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標系中的兩個定點,求出這兩個定點的坐標.3、根據(jù)下列條件,求二次函數(shù)的解析式.(1)圖象經(jīng)過(0,1),(1,﹣2),(2,3)三點;(2)圖象的頂點(2,3),且經(jīng)過點(3,1);4、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點D與C重合,EF與BC交于點M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當BF+CE最小時,直接出的值.-參考答案-一、單選題1、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點】本題考查圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì),掌握圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì).2、C【解析】【分析】加的面積=新正方形的面積-原正方形的面積,把相關數(shù)值代入化簡即可.【詳解】解:∵新正方形的邊長為x+4,原正方形的邊長為4,∴新正方形的面積為(x+4)2,原正方形的面積為16,∴y=(x+4)2-16=x2+8x,故選:C.【考點】本題考查列二次函數(shù)關系式;得到增加的面積的等量關系是解決本題的關鍵.3、A【解析】【分析】首先根據(jù)圖像得出拋物線的對稱軸和其中一個交點坐標,然后根據(jù)二次函數(shù)的對稱性即可求得另一個交點坐標.【詳解】解:由圖像可得,拋物線的對稱軸為,與x軸的一個交點坐標為(5,0),∵拋物線與x軸的兩個交點關于對稱軸對稱,∴拋物線與x軸的另一個交點坐標為(﹣1,0),故選:A.【考點】此題考查了二次函數(shù)與x軸的交點,二次函數(shù)的對稱性,解題的關鍵是根據(jù)二次函數(shù)的對稱性求出與x軸的另一個交點坐標.4、D【分析】根據(jù)必然事件的概念“在一定條件下,有些事件必然會發(fā)生,這樣的事件稱為必然事件”可判斷選項D是必然事件;根據(jù)不可能事件的概念“有些事件必然不會發(fā)生,這樣的事件稱為不可能事件”可判斷選項B是不可能事件;根據(jù)隨機事件的概念“在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機事件”判斷選項A、C是隨機事件,即可得.【詳解】解:A、剛到車站,恰好有車進站是隨機事件;B、在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球是不可能事件;C、打開九年級上冊數(shù)學教材,恰好是概率初步的內(nèi)容是隨機事件;D、任意畫一個三角形,其外角和是360°是必然事件;故選D.【點睛】本題考查了必然事件,解題的關鍵是熟記必然事件的概念,不可能事件的概念和隨機事件的概念.5、C【分析】先設半徑為r,再根據(jù)弧長公式建立方程,解出r即可【詳解】設半徑為r,則周長為2πr,120°所對應的弧長為解得r=3故選C【點睛】本題考查弧長計算,牢記弧長公式是本題關鍵.二、多選題1、BCDE【解析】【分析】利用圖象信息,以及二次函數(shù)的性質(zhì)即可一一判斷.【詳解】∵二次函數(shù)與x軸有兩個交點,∴b2-4ac>0,故A錯誤,觀察圖象可知:當x>-1時,y隨x增大而減小,故B正確,∵拋物線與x軸的另一個交點為在(0,0)和(1,0)之間,∴x=1時,y=a+b+c<0,故C正確,∵當m>2時,拋物線與直線y=m沒有交點,∴方程ax2+bx+c-m=0沒有實數(shù)根,故D正確,∵對稱軸x=-1=,∴b=2a,∵a+b+c<0,∴3a+c<0,故E正確,故答案為BCDE.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關系,根的判別式、拋物線與x軸的交點等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.2、AC【解析】【分析】旋轉(zhuǎn)是一個圖形繞著一個定點旋轉(zhuǎn)一定的角度,各對應點之間的位置關系也保持不變;在平面內(nèi),如果一個圖形沿一條直線對折,對折后的兩部分都能完全重合,這樣的圖形叫做軸對稱圖形,這條直線就是其對稱軸.據(jù)此即可解答.【詳解】由旋轉(zhuǎn)是一個圖形繞著一個定點旋轉(zhuǎn)一定的角度,各對應點之間的位置關系也保持不變,分析可得,進行旋轉(zhuǎn)變換的是A;左邊圖形能軸對稱變換得到右邊圖形,則進行軸對稱變換的是C;根據(jù)平移是將一個圖形從一個位置變換到另一個位置,各對應點間的連線平行,分析可得,D是平移變化;故答案為:A;C.【考點】本題考查了幾何變換的定義,注意結(jié)合幾何變換的定義,分析圖形的位置的關系,特別是對應點之間的關系.3、BCD【解析】【分析】由根的判別式求出AC=b=4,由勾股定理的逆定理證出△ABC是直角三角形,再由直角三角形斜邊上的中線性質(zhì)即可得出AC的長,利用等積法求出斜邊上的高,根據(jù)勾股定理求出BC邊上的中線,利用直角三角形外接圓的半徑是斜邊的一半得出外接圓的半徑.【詳解】∵一元二次方程x2-4x+b=0有兩個相等的實數(shù)根,∴(-4)2-4b=0,∴b=4.∴AC=4,∴AB2+BC2=AC2,∵△ABC為直角三角形,∵直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),∴AC邊上的中線長=2,故A錯誤;∵ABBC=ACh∴22=4h∴h=故B正確;BC邊上的中線==故C正確直角三角形外接圓的半徑等于斜邊的一半,所以為2故D正確.故答案為:BCD【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當Δ=0,方程有兩個相等的實數(shù)根;還考查了利用勾股定理判定直角三角形及勾股定理的應用,并考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)以及三角形的外接圓的性質(zhì).4、AC【解析】【分析】根據(jù)一元二次方程根的判別式及分式有意義的條件和分式方程的解為非負整數(shù)分別求出a的取值范圍,即可得答案.【詳解】∵關于的一元二次方程有兩個不相等的實數(shù)解,∴,解得:,∵,∴,解得:,∵關于的分式方程的解為非負整數(shù),∴且,解得:且,∴且a≠3,∵是整數(shù),∴a=1或5,故選:AC.【考點】本題考查一元二次方程根的判別式、解分式方程及分式有意義的條件,正確得出兩個不等式的解集是解題關鍵,注意分式的分母不為0的隱含條件,避免漏解.5、ACD【解析】【分析】連接OA,BE,根據(jù)PA、PB是⊙O的切線,可得PA=PB,OA=OB,可得OP是AB的垂直平分線,根據(jù)垂徑定理,進而可以判斷A;根據(jù)OB=OC,AF=BF,可得OF是三角形BAC的中位線,進而即可判斷D;證明∠PBE=∠EBA,∠APE=∠BPE,即可判斷C;根據(jù)AC∥OE,可得△CDA∽△EDF,進而可以判斷B.【詳解】如圖,連接OA,BE,∵PA、PB是⊙O的切線,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分線,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正確;∵BC是⊙O的直徑,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正確;∵PB是⊙O的切線,∴∠PBE+∠EBC=90°,∵BC是⊙O的直徑,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的內(nèi)心;故C正確;∵AC∥OE,∴△CDA∽△EDF.故B錯誤;∴結(jié)論正確的是A,C,D.故選:ACD.【考點】此題考查了圓周角定理、切線的性質(zhì)、三角形中位線定理、及勾股定理的知識,解答本題的關鍵是熟練掌握切線的性質(zhì)及圓周角定理,注意各個知識點之間的融會貫通.三、填空題1、【分析】①如圖1所示,由題意知,EF為△ABC的中位線,∠EFC=∠ABC=45°,∠PAO=45°,∠PAO=∠OFH,∠POA=∠FOH,∠H=∠APO,在Rt△APC中,EA=EC,有PE=EA=EC,∠EPA=∠EAP=∠BAH,∠H=∠BAH,BH=BA,∠ADP=∠BDC=45°,∠ADB=90°,知BD⊥AH,∠DBA=∠DBC=22.5°,∠ADB=∠ACB=90°,有A,D,C,B四點共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∠DAC=∠DCA=22.5°,知DA=DC,設AD=a,則DC=AD=a,PD=a=AP,tan∠CAP==計算求解即可;②如圖2所示,當點P在線段CD上時,同理可證:DA=DC,設AD=a,則CD=AD=a,PD=,PC=a﹣a,tan∠CAP=,計算求解即可,而情形2滿足要求.【詳解】解:①如圖1,當點D在線段PC上時,延長AD交BC的延長線于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四點共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,設AD=a,則DC=AD=a,PD=a=AP,∴tan∠CAP===+1;②如圖2中,當點P在線段CD上時,同理可證:DA=DC,設AD=a,則CD=AD=a,PD=∴PC=a﹣a,∴tan∠CAP===,∵點P在線段EF上,∴情形1不滿足條件,情形2滿足條件;故答案為:﹣1.【點睛】本題考查了中位線,等腰三角形的判定與性質(zhì),旋轉(zhuǎn),直角三角形斜邊上中線的性質(zhì),正切函數(shù)等知識點.解題的關鍵在于表示出正切中線段的長度.2、60π【解析】【分析】利用圓錐的側(cè)面積公式:,求出圓錐的母線即可解決問題.【詳解】解:圓錐的母線,∴圓錐的側(cè)面積=π×10×6=60π,故答案為:60π.【考點】本題考查了圓錐的側(cè)面積,勾股定理等知識,解題的關鍵是記住圓錐的側(cè)面積公式.3、0.9【分析】根據(jù)題意可得長方形的面積,然后依據(jù)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,總面積乘以頻率即為會徽圖案的面積.【詳解】解:由題意可得:長方形的面積為,∵骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,∴會徽圖案的面積為:,故答案為:.【點睛】題目主要考查根據(jù)頻率計算滿足條件的情況,理解題意,熟練掌握頻率的計算方法是解題關鍵.4、##【分析】設與AC相交于點D,過點D作,垂足為點E,根據(jù)勾股定理逆定理可得為直角三角形,根據(jù)三邊關系可得,根據(jù)題意及等角對等邊得出,在中,利用正弦函數(shù)可得,結(jié)合圖形,利用扇形面積公式及三角形面積公式求解即可得.【詳解】解:設與AC相交于點D,過點D作,垂足為點E,∵,,,∴,∴為直角三角形,∴,∵繞點B順時針方向旋轉(zhuǎn)45°得到,∴,∴,∴,在中,,∴,∴,∴,,,,,故答案為:.【點睛】題目主要考查勾股定理逆定理,旋轉(zhuǎn)的性質(zhì),等角對等邊的性質(zhì),正切函數(shù),扇形面積等,理解題意,結(jié)合圖形,綜合運用這些知識點是解題關鍵.5、3【分析】過A作AE⊥BC于E,過C作CF⊥AD于F,根據(jù)圓周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性質(zhì)可知BE=CE=6,根據(jù)相似三角形的判定證明△ABE∽△CDF,由相似三角形的性質(zhì)和勾股定理分別求得AE、DF、CF,AF即可求解.【詳解】解:過A作AE⊥BC于E,過C作CF⊥AD于F,則∠AEB=∠CFD=90°,∵=,AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,則,∴AD=DF+AF=3+2,故答案為:3+2.【點睛】本題考查圓周角定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理,熟練掌握圓周角定理和相似三角形的判定與性質(zhì)是解答的關鍵.四、簡答題1、△AFD∽△EFB,△ABC∽△ADE;理由見解析.【解析】【分析】根據(jù)兩個三角形的兩組角對應相等,那么這兩個三角形互為相似三角形證明即可.【詳解】解:△AFD∽△EFB,△ABC∽△ADE.理由如下:∵∠2=∠3,∠AFD=∠EFB∴△AFD∽△EFB,∴∠B=∠D.∵∠1=∠2,∴,∴∠BAC=∠DAE,∴△ABC∽△ADE.【考點】本題考查相似三角形的判定定理,熟記判定定理,本題用到了兩組角對應相等的兩個三角形互為相似三角形.2、(1)見解析;(2)見解析【解析】【分析】(1)想辦法證明AG=PF,AG∥PF,推出四邊形AGFP是平行四邊形,再證明PA=PF即可解決問題.(2)證明△AEP∽△DEC,可得,由此即可解決問題.【詳解】解:(1)∵平分,,,∴,,又∵在中,,在中,∴,又∵,∴,∴,∴,∵,,∴AG∥PF,∴四邊形是平行四邊形,∴四邊形AGFP是菱形;(2)∵,,∴,,∴,又∵,,∴,∴,∴,∴,又∵,∴.【考點】本題主要考查了角平分線的性質(zhì),菱形的判定,相似三角形的性質(zhì)與判定,矩形的性質(zhì),解題的關鍵在于能夠熟練掌握相關知識進行求解.五、解答題1、(1)(2)【分析】(1)根據(jù)運動重合部分不同情況分四種情況討論,①當時,②當時,③當時,④當時,根據(jù)三角形的面積公式求函數(shù)解析式即可.(2)作關于的對稱點,連接,過點作于點,過點作于點,設交于點,交于點,則的最小值即為的長,進而解直角三角形,即可求得的長,即的最小值(1)等腰直角三角形,,,,在,,①當時,如圖,重疊部分面積為,設交于點,過點作于點,以每秒1個單位的速度沿向右運動,設,則在,,即解得②當時,如圖,重疊部分面積為四邊形的面積,設交于點,過點作于點,設交于點,,③當時,此時重疊面積為④當時,如圖,設交于點,此時重疊面積為四邊形的面積,,綜上所述,(2)如圖,作關于的對稱點,連接,過點作于點,過點作于點,設交于點,交于點,則在中,則的最小值即為的長在中,設,,則中,為的中點,則,即的最小值為【點睛】本題考查了動點的函數(shù)問題,解直角三角形,(1)分類討論,(2)轉(zhuǎn)化線段是解題的關鍵.2、(1)-1;(2)(0,-3)與(2,-3).【解析】【分析】(1)根據(jù)拋物線的頂點的縱坐標是?2,可以求得m的值;(2)根據(jù)當m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標系中的兩個定點,可以求得這兩個定點的坐標.【詳解】解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,拋物線的頂點的縱坐標是-2,∴-m-3=-2,解得m=-1,即m的值是-1;(2)∵當m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標系中的兩個定點,當m=1時,y=x2-2x-3;當m=2時,y=2x2-4x-3,∴x2-2x-3=2x2-4x-3.∴x2-2x=0.∴x1=0,x2=2.∴這兩個定點為(0,-3)與(2,-3).【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,利用數(shù)形結(jié)合的思想和二次函數(shù)的性質(zhì)解答.3、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先設出拋物線的解析式為y=ax2+bx+c,再將點(0,1),(1,?2),(2,3)代入解析式中,即可求得拋物線的解析式;(2)由于已知拋物線的頂點坐標,則可設頂點式y(tǒng)=a(x?2)2+3,然后把(3,1)代入求出a的值即可.【詳解】解:(1)設出拋物線的解析式為y=ax2+bx+c,將(0,1),(1,﹣2),(2,3)代入解析式,得:,解得:,∴拋物線解析式為:y=4x2﹣7x+1;(2)設拋物線解析式為y=a(x﹣2)2+3,把(3,1)代入得:a(3﹣2)2+3=1,解得a=﹣2,所以拋物線解析式為y=﹣2(x﹣2)2+3.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式:一般地,當已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當已知拋物線的頂點或?qū)ΨQ軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.4、(1);(2)證明見詳解;(3).【分析】(1)過點P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點A、M、C、E四點共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當BE在∠ABC的平分線上時,與BE在△ABC外部時,當BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,先證B、A、C′三點共線,根據(jù)兩點之交線段最短可得BF+CE=BF+C′F≥BC′,當點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點共線,根據(jù)兩點之間線段最短可得BF+CE=BF+FC′≥BC′,當點F在BC′上時,BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點A、M、C、E四點共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海外安保培訓科目
- 拖拉機鑄造加工生產(chǎn)線操作調(diào)整工變革管理知識考核試卷含答案
- 乙炔發(fā)生工崗前生產(chǎn)標準化考核試卷含答案
- 窯爐反應工安全生產(chǎn)意識模擬考核試卷含答案
- 橋梁施工安全教育培訓
- 酒店員工培訓效果跟蹤與反饋制度
- 酒店客房預訂操作規(guī)范及服務質(zhì)量制度
- 酒店餐飲服務與客戶滿意度調(diào)查制度
- 年4000噸廢貴金屬催化劑及物料綜合利用技術(shù)改造項目環(huán)境影響報告表
- 流行性感冒培訓知識課件
- 校園文化建設可行性報告
- 2025年春人教版(2024)小學數(shù)學一年級下冊教學計劃
- 特種設備生產(chǎn)(含安裝、改造、維修)單位質(zhì)量安全風險管控清單
- 五年級下冊字帖筆順
- 租賃汽車的二手車價值評估模型
- 非遺文化媽祖祭典文化知識
- Charter開發(fā)與立項流程(CDP)
- JTGT F20-2015 公路路面基層施工技術(shù)細則
- 七年級下冊《6.1 第3課時 平方根》課件
- GB/T 12250-2023蒸汽疏水閥標志
- 7年級期末考試質(zhì)量分析
評論
0/150
提交評論