版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Large
Modelsin
Finance:From
Innovationto
Real-World
Impact演講人
:劉煒清2017
2021Anti-Money
LaunderingWe
haveexpanded
our
industrial
partnershipintotheareas
of
Regtech,Anomaly
Detection,and
Fraud
Detection.We
haveappliedAItechniquesto
real-world
anti-money
laundering
scenario
andachieved
high
performance.
9
years
ofdeepcollaborationwithfinancial
industry
partners.Intelligent
InvestmentTogetherwithour
partners,we
launch
the
exploration
ofapplyingAItechniquesto
quantitative
investment. 9yearsofdeepcollaborationwithfinancial
industry
partners.
Researchtopicsfrom
realtasks.
Research
results
into
realproducts.2017201820192021Key
ResearchChallenges
ofAIfor
FinanceWe
havesummarized
andaddressed
several
key
research
challenges
inthefieldofAIfor
Finance.
Wealso
keep
updatingourtechniques
inpracticewithour
latest
research
findings.Anti-MoneyLaunderingWe
haveexpanded
our
industrial
partnershipintotheareas
of
Regtech,Anomaly
Detection,and
Fraud
Detection.We
haveappliedAItechniquesto
real-world
anti-money
laundering
scenario
andachieved
high
performance.TechniquesappliedOur
partners
startto
implement
ourresearch
andtechniques
intheir
real-world
productionswithgreatsuccess
and
reached
the
highest
levelof
performancethus
far.Intelligent
InvestmentTogetherwithour
partners,we
launch
the
exploration
ofapplyingAItechniquesto
quantitative
investment. 9yearsofdeepcollaborationwithfinancial
industry
partners.
Researchtopicsfrom
realtasks.
Research
results
into
realproducts.》sequentia
Decision
Making.
“universal
Trading
for
orderExecution
withoraclepolicyDistillation
”,
AAAI2021..“Towards
ApplicableReinforcementLearning:Improving
the
Generalizationand
sampleEficiency
withpolicyEnsemble
”,IJcAI
2022..“LearningMulti-AgentIntention
-Aware
communication
for
optimalMulti-orderExecutioninFinance
”,KDD2023.
“BpQp:
ADiferentiable
convex
optimizationFramework
forEficientEnd-to-EndLearning”,NeurIps2024.
Time-variant
pattern.“DDG-DA:DataDistributionGeneration
forpredictable
conceptDrift
Adaptation
”,
AAAI
2022..“LearningMultiple
stock
Tradingpatterns
with
TemporalRouting
Adaptor
andoptimal
Transport
”,KDD2021..
“Multi-Granularity
Residual
Learning
with
conidence
Estimation
for
Time
series
prediction
”,
www
2022.
comp
excorre
ation.“DeepRiskModel:
ADeepLearningsolution
forMiningLatentRiskFactors
toImprove
covarianceMatrixEstimation
”,IcAIF
2021.“Temporally
correlated
Task
scheduling
for
sequenceLearning
”,IcML2021..“Removingcamoulage
andRevealingcollusion:LeveragingGang-crimepatterninFraudsterDetection”,KDD2023.
Exp
ainabi
ity/lnterpretabiity.“LearningDiferential
operators
forInterpretable
Time
seriesModeling
”,KDD2022..“MeasuringModel
complexity
ofNeuralNetworks
withcurve
ActivationFunctions
”,KDD2020》Heterogenous
and
Hierarchica
Data.
“stock
Trendprediction
withMulti
-granularityData:
A
contrastiveLearning
Approach
with
AdaptiveFusion
”,cIKM2021..“REsT:RelationalEvent-drivenstock
TrendForecasting
”,
www
2021..“Digger-Guider:High-FrequencyFactorExtraction
for
stock
Trendprediction”,
TKDE2024..“MG-TsD:Multi-granularity
time
seriesdifusionmodels
with
guidedlearningprocess”,IcLR2024. 9yearsofdeepcollaborationwithfinancial
industry
partners.
Researchtopicsfrom
realtasks.
Research
results
into
realproducts.》》》sequentiaDecision
Making.“universal
Trading
for
orderExecution
withoraclepolicyDistillation
”,
AAAI2021..“Towards
ApplicableReinforcementLearning:Improving
the
Generalizationand
sampleEficiency
withpolicyEnsemble
”,IJcAI
2022..“LearningMulti-AgentIntention
-Aware
communication
for
optimalMulti-orderExecutioninFinance
”,KDD2023.“BpQp:
ADiferentiable
convexoptimizationFramework
forEficientEnd-to-EndLearning”,NeurIps2024.Time-variant
pattern.“DDG-DA:DataDistributionGeneration
forpredictable
conceptDrift
Adaptation
”,
AAAI
2022..“LearningMultiple
stock
Tradingpatterns
with
TemporalRouting
Adaptor
andoptimal
Transport
”,KDD2021..
“Multi-GranularityResidualLearning
withconidenceEstimation
for
Time
seriesprediction
”,
www
2022
.Heterogenous
and
Hierarchica
Data.“stock
Trendprediction
withMulti
-granularityData:A
contrastiveLearning
Approach
with
AdaptiveFusion
”,cIKM2021..“REsT:RelationalEvent-drivenstock
TrendForecasting
”,
www
2021
..“Digger-Guider:High-FrequencyFactorExtraction
for
stock
Trendprediction
”,TKDE2024..“MG-TsD:Multi-granularity
time
seriesdifusionmodels
withguidedlearningprocess”,IcLR2024.
comp
excorre
ation.“DeepRiskModel:
ADeepLearningsolution
forMiningLatentRiskFactors
toImprove
covarianceMatrixEstimation
”,IcAIF
2021.“Temporally
correlated
Taskscheduling
for
sequenceLearning
”,IcML2021..“Removingcamoulage
andRevealingcollusion:LeveragingGang-crimepatterninFraudsterDetection”,KDD2023.
Exp
ainabi
ity/lnterpretabiity.“LearningDiferentialoperators
forInterpretable
Time
seriesModeling
”,KDD2022..“MeasuringModelcomplexity
ofNeuralNetworks
withcurve
ActivationFunctions
”,KDD2020ResearchProduct 9yearsofdeepcollaborationwithfinancial
industry
partners.
Researchtopicsfrom
realtasks.
Research
results
into
realproducts.
Popularopensourcequant
investmentframeworkQlib.2017
2018
2019
2020
2021Key
ResearchChallenges
ofAIfor
FinanceWe
havesummarized
andaddressed
several
key
research
challenges
inthefieldofAIfor
Finance.
Wealso
keep
updatingourtechniques
inpracticewithour
latest
research
findings.Anti-MoneyLaunderingWe
haveexpanded
our
industrial
partnershipintotheareas
of
Regtech,Anomaly
Detection,and
Fraud
Detection.We
haveappliedAItechniquesto
real-world
anti-money
laundering
scenario
andachieved
high
performance.ReleaseofQlibWe
haveopen-sourced
our
researchtoolset
andplatform,Qlib,onGitHub.
It
supports
multiple
learning
paradigms
andcoverstheentire
process
ofquantitative
investment.
It
has
received
morethan
28kstars
sofar.TechniquesappliedOur
partners
startto
implement
ourresearch
andtechniques
intheir
real-world
productionswithgreatsuccess
and
reached
the
highest
levelof
performancethus
far.Intelligent
InvestmentTogetherwithour
partners,we
launch
the
exploration
ofapplyingAItechniquesto
quantitative
investment.Qlib
isanAI-orientedQuant
investment
platformthat
aimsto
useAItechtoempowerQuant
Research,
from
exploring
ideasto
implementing
productions.
Qlibsupportsdiverse
ML
modeling
paradigms,
includingsupervisedlearning(2020)Design
Goal:
Bridgingthegap
between
researchand
product
inquant
investment/microsoft/qlibQuant
ResearchAutomation
Powered
byQuant
Investment
FrameworkAdvantagesEasilyfusing
multi
-modalitydata
sourcesConcernsand
Limitations1.
Notdeterministic
result2.
Hard
to
be
evaluated3.
Hardtofurther
improve4.
Hard
to
be
regulatedAdvantagesHigher
intelligencewithin
financialdomainConcernsand
LimitationsHardto
handle
non
natural
languagefinancial
dataOurVisionFinanceAI2.0:
deterministicagentswithself-evolutionin
a
market-in-the-loopsystem.Code-OrientedAgentic
AutomationDomain-NativeFoundation
ModelsFinancialDomainFoundationModelOurApproachFinancialDomainAgento
Foundation
models
godomain-native.
Trainonorder-level
market
data
(notjust
text)tocapture
microstructure
andshow
scaling
behavior
realistic,controllable
generation
(LMM).o
Evaluationgoessimulation-centricMove
fromoffline
benchmarksto
market-in-the
-loop
stress
tests
and
what-ifs
policy,
risk,
andcompliance
measured
beforecapital
is
atrisk
(MarS).o
Agentic
R&D
goes
deterministic
LLMagents
generate
code,
run
backtests,and
auto-iteratewithobjective
metricspowerful,
repeatable,
reviewable
decisions
(Qlib
+
R&D-Agent).Code-basedSolution#3
#2
TrainedModel#1創(chuàng)R&D-AgentModelTraining324:2o
Foundation
models
godomain-native.
Trainonorder-level
market
data
(notjust
text)tocapture
microstructure
andshow
scaling
behavior
realistic,controllable
generation
(LMM).o
Evaluationgoessimulation-centricMove
fromoffline
benchmarksto
market-in-the
-loop
stress
tests
and
what-ifs
policy,
risk,
andcompliance
measured
beforecapital
is
atrisk
(MarS).Code-basedSolutionQuant
ResearchAutomation
poweredby
andRR&D-Agent#3
#2
TrainedModel#1創(chuàng)R&D-AgentModelTraining3242Quant
ResearchAutomationpowered
byQlibandR&D-Agent劉煒清微軟亞洲研究院IncollaborationwithXuYang,XiaoYang,Shikai
Fang,YugeZhang,ZehuaWang,YelongShen,WeizhuChen,Jiang
Biano
Buildingmain-stream
MLmodelsonspeciallydesignedtask
and
dataset.o
Continuousexpert-led
refinementthroughtrial,exploration,andadaptation.SolutionIntelligenceR&D
Agentcodifies
humanexperts'
R-D
Co
Evolution
LOOPSDevelopmentAgentImplementation
&
validationGenerateshigh-qualityideas
&experimentplansProducesrobust,production-ready
codeResearchAgentIdeation
&
hypothesis
craftingExternal
EnvironmentDevelopmentAgentResearchAgentFeedback
on
Trainingand
Executionmmmm
In-depthReason
of
R
mm
D
DesignImplementedSolutionFeedback
on
Quality?Typical
Quan
t
R&Dpipelineandopportunitiesof
Automation?Through
52
rounds
of
automated
evolution
over
18
hours,
a
comprehensively
enhancedintelligentquant
investmentsolution
has
beendeveloped,outperformingacrossallfour
key
metrics.?
Thegraydashed
lines
representthetopsolutionson
Qlib.?The
Automated
Evolvingof
Intelligent
QuantInvestmentsolutionmetricsachievedby
previouslyopen-sourcedat3Code-basedSolutionLarge
MarketModel
(
)
&
Its
Universal
Financial
MarketSimulation
Engine
(
)Quant
ResearchAutomation
powered
by
andRR&D-Agent#3
#2
#1TrainedModel創(chuàng)R&D-AgentModelTraining242Large
Market
Model(LMM)&
ItsUniversal
Financial
MarketSimulationIncollaborationwithJunjie
Li,Yang
Liu,ChangXu,Shikai
Fang,
LewenWangandJiang
BianEngine
(MarS)劉煒清微軟亞洲研究院Financial
MarketML
Modelfrom
MSRAo
Building
ML
modelsonmarketindicators,Indicators
of
the
marketInvestor/
Regulator?
Challengefortraditional
ML
methods?
Opportunityfor
Large
Foundation
Model★orderFlow
Market
Perspectivein
Macroscopic
Individual
Perspectivein
MicroscopicTokenizationofan
Order-BatchTokenizationofa
Single
Order…Transformer-basedAuto-regressiveTrainingonTwo-KindsofToken
SeriesLarge
Market
ModelIndividual
Perspective
in
MicroscopicMarket
Perspective
in
MacroscopicOrder-levelHistorical
Market
DataOrder-batch
ModelOrder
ModelTrainingLMMNew
ParadigmTraditionTraditional
Methods?Need
redesign
for
new
targets.NewApproach?Uses
recent
real
data
as
input
in
LMM.?Generatesfutureorderflows
and
corresponding
markettrajectories.?Derivesany
indicator’s
point/distributionalforecastingacrossdiversehorizons
from
multiple
future
markettrajectories.Enhanced
Performance?Outperformstraditionalalgorithms
in
predictions.?Evidenceof
LMM’s
powerful
modellingcapabilities.Accuracy0.70.60.50.41-min2-min
3-min
4-min
5-min3-class
Classification
of
PricePrediction
LMM
(1.02B)DeepLOB
(5different
models)Multiple
Rounds
ofGenerationIt’sallaboutspeed,speed,speed!~15xspeed-upofresponsetime
makes
thepapergainsto
real-world
promise.worldpromise*Accuracydropssignificantlywithfewerthan
16rollouts.ControlLMMInteractMarS:ControllableandInteractable
Financial
Market
SimulationPowered
by
LMMMarSDeployTrainVague
DescriptionofTargetScenarioUser-InjectedOrdersDigitalTwinExisting
orders
Generated
ordersincluding
user
submitted
orders
including
user
submitted
ordersO
O”Shaping
theFutureBased
onRealizedRealities”minutetcancelt-2t-1BidAsKcancelBidAsKBidtcancelAsK
o
vocabERefined
Logits”ReflectingImmediatechannelscancelBidAsK
×廠
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026寧夏銀川潔能科技有限公司招聘4人筆試備考題庫(kù)及答案解析
- 2026年德宏州事業(yè)單位考試招聘工作人員(208人)筆試參考題庫(kù)及答案解析
- 2026上半年安徽事業(yè)單位聯(lián)考合肥市肥東縣招聘51人筆試備考試題及答案解析
- 2026民航醫(yī)學(xué)中心(民航總醫(yī)院)招聘應(yīng)屆畢業(yè)生45人考試備考試題及答案解析
- 2026年度蚌埠醫(yī)科大學(xué)公開(kāi)招聘高層次人才預(yù)筆試備考試題及答案解析
- 2026年冶金起重機(jī)操作規(guī)范
- 2026年創(chuàng)傷骨科患者護(hù)理實(shí)務(wù)解析
- 2026年民宿設(shè)計(jì)與運(yùn)營(yíng)培訓(xùn)
- 首都師大附中科學(xué)城學(xué)校教師招聘筆試備考試題及答案解析
- 2026年贏戰(zhàn)年度計(jì)劃的具體落實(shí)
- 園林綠化養(yǎng)護(hù)日志表模板
- 電池回收廠房建設(shè)方案(3篇)
- 《建筑工程定額與預(yù)算》課件(共八章)
- 鐵路貨運(yùn)知識(shí)考核試卷含散堆裝等作業(yè)多知識(shí)點(diǎn)
- 幼兒游戲評(píng)價(jià)的可視化研究
- 跨區(qū)銷(xiāo)售管理辦法
- 金華東陽(yáng)市國(guó)有企業(yè)招聘A類(lèi)工作人員筆試真題2024
- 2025年6月29日貴州省政府辦公廳遴選筆試真題及答案解析
- 管培生培訓(xùn)課件
- 送貨方案模板(3篇)
- 2025年湖南省中考數(shù)學(xué)真題試卷及答案解析
評(píng)論
0/150
提交評(píng)論