版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省禹州市中考數(shù)學(xué)練習(xí)題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、一元二次方程配方后可化為(
)A. B.C. D.2、如圖,在Rt△ABC中,,,點(diǎn)D、E分別是AB、AC的中點(diǎn).將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,射線BD與射線CE交于點(diǎn)P,在這個(gè)旋轉(zhuǎn)過(guò)程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④3、把7個(gè)同樣大小的正方體形狀的積木堆放在桌子上,從正面和左面看到的形狀圖都是如圖所示的同樣的圖形,則其從上面看到的形狀圖不可能是()A. B. C. D.4、下列圖形中,可以看作是中心對(duì)稱圖形的是()A. B.C. D.5、下列圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是()A. B. C. D.二、多選題(5小題,每小題3分,共計(jì)15分)1、如圖,PA、PB是的切線,切點(diǎn)分別為A、B,BC是的直徑,PO交于E點(diǎn),連接AB交PO于F,連接CE交AB于D點(diǎn).下列結(jié)論正確的是(
)A.CE平分∠ACB B. C.E是△PAB的內(nèi)心 D.2、已知關(guān)于的方程,下列說(shuō)法不正確的是(
)A.當(dāng)時(shí),方程無(wú)解 B.當(dāng)時(shí),方程有兩個(gè)相等的實(shí)數(shù)根C.當(dāng)時(shí),方程有兩個(gè)相等的實(shí)數(shù)根 D.當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根3、古希臘數(shù)學(xué)家歐幾里得在《幾何原本》中記載了用尺規(guī)作某種六邊形的方法,其步驟是:①在⊙O上任取一點(diǎn)A,連接AO并延長(zhǎng)交⊙O于點(diǎn)B;②以點(diǎn)B為圓心,BO為半徑作圓弧分別交⊙O于C,D兩點(diǎn);③連接CO,DO并延長(zhǎng)分別交⊙O于點(diǎn)E,F(xiàn);④順次連接BC,CF,F(xiàn)A,AE,ED,DB,得到六邊形AFCBDE.連接AD,EF,交于點(diǎn)G,則下列結(jié)論正確的是.A.△AOE的內(nèi)心與外心都是點(diǎn)G B.∠FGA=∠FOAC.點(diǎn)G是線段EF的三等分點(diǎn) D.EF=AF4、如圖所示,二次函數(shù)的圖象的一部分,圖像與x軸交于點(diǎn).下列結(jié)論中正確的是(
)A.拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)是B.C.若拋物線經(jīng)過(guò)點(diǎn),則關(guān)于x的一元二次方程的兩根分別為,5D.將拋物線向左平移3個(gè)單位,則新拋物線的表達(dá)式為5、如圖,在中,為直徑,,點(diǎn)D為弦的中點(diǎn),點(diǎn)E為上任意一點(diǎn),則的大小不可能是(
)A. B. C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、如圖,在平面直角坐標(biāo)系中,點(diǎn)A在拋物線y=x2﹣2x+2上運(yùn)動(dòng).過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,以AC為對(duì)角線作矩形ABCD,連接BD,則對(duì)角線BD的最小值為_(kāi)____.2、菱形的一條對(duì)角線長(zhǎng)為8,其邊長(zhǎng)是方程x2-8x+15=0的一個(gè)根,則該菱形的面積為_(kāi)_______.3、若拋物線的圖像與軸有交點(diǎn),那么的取值范圍是________.4、如圖所示,AB是⊙O的直徑,弦CD⊥AB于H,∠A=30°,OH=1,則⊙O的半徑是______.5、如圖,四邊形ABCD內(nèi)接于⊙O,∠A=125°,則∠C的度數(shù)為_(kāi)_____.四、簡(jiǎn)答題(2小題,每小題10分,共計(jì)20分)1、如圖所示,在銳角中,,,所對(duì)的邊分別是a,b,c,求證:.2、如圖,為了測(cè)量一棟樓的高度,小明同學(xué)先在操場(chǎng)上處放一面鏡子,向后退到處,恰好在鏡子中看到樓的頂部;再將鏡子放到處,然后后退到處,恰好再次在鏡子中看到樓的頂部(在同一條直線上),測(cè)得,如果小明眼睛距地面高度,為,試確定樓的高度.五、解答題(4小題,每小題10分,共計(jì)40分)1、如圖①已知拋物線的圖象與軸交于、兩點(diǎn)(在的左側(cè)),與的正半軸交于點(diǎn),連結(jié);二次函數(shù)的對(duì)稱軸與軸的交點(diǎn).(1)拋物線的對(duì)稱軸與軸的交點(diǎn)坐標(biāo)為,點(diǎn)的坐標(biāo)為_(kāi)____(2)若以為圓心的圓與軸和直線都相切,試求出拋物線的解析式:(3)在(2)的條件下,如圖②是的正半軸上一點(diǎn),過(guò)點(diǎn)作軸的平行線,與直線交于點(diǎn)與拋物線交于點(diǎn),連結(jié),將沿翻折,的對(duì)應(yīng)點(diǎn)為’,在圖②中探究:是否存在點(diǎn),使得’恰好落在軸上?若存在,請(qǐng)求出的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.2、若二次函數(shù)圖像經(jīng)過(guò),兩點(diǎn),求、的值.3、如圖,已知點(diǎn)在上,點(diǎn)在外,求作一個(gè)圓,使它經(jīng)過(guò)點(diǎn),并且與相切于點(diǎn).(要求寫(xiě)出作法,不要求證明)4、在中,,,將繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一定的角度得到,點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別是D、E.(1)當(dāng)點(diǎn)E恰好在AC上時(shí),如圖1,求的大??;(2)若時(shí),點(diǎn)F是邊AC中點(diǎn),如圖2,求證:四邊形BEDF是平行四邊形(請(qǐng)用兩組對(duì)邊分別相等的四邊形是平行四邊形)-參考答案-一、單選題1、B【解析】【分析】根據(jù)題意直接對(duì)一元二次方程配方,然后把常數(shù)項(xiàng)移到等號(hào)右邊即可.【詳解】解:根據(jù)題意,把一元二次方程配方得:,即,∴化成的形式為.故選:B.【考點(diǎn)】本題考查配方法解一元二次方程,注意掌握配方法的一般步驟:把常數(shù)項(xiàng)移到等號(hào)的右邊;把二次項(xiàng)的系數(shù)化為1;等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.選擇用配方法解一元二次方程時(shí),最好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2的倍數(shù).2、B【分析】根據(jù),,點(diǎn)D、E分別是AB、AC的中點(diǎn).得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時(shí),CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當(dāng)AE⊥CP時(shí),CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時(shí),BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點(diǎn)P在以點(diǎn)O為圓心,OA長(zhǎng)為半徑,的圓上運(yùn)動(dòng)軌跡為,L可判斷④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為正確即可.【詳解】解:∵,,點(diǎn)D、E分別是AB、AC的中點(diǎn).∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時(shí),CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當(dāng)AE⊥CP時(shí),CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時(shí),BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點(diǎn)P在以點(diǎn)O為圓心,OA長(zhǎng)為半徑,的圓上運(yùn)動(dòng)軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為正確;正確的是①②④.故選B.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線段中點(diǎn)定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長(zhǎng)公式,本題難度大,利用輔助線最長(zhǎng)準(zhǔn)確圖形是解題關(guān)鍵.3、C【分析】利用俯視圖,寫(xiě)出符合題意的小正方體的個(gè)數(shù),即可判斷.【詳解】A、當(dāng)7個(gè)小正方體如圖分布時(shí),符合題意,本選項(xiàng)不符合題意.B、當(dāng)7個(gè)小正方體如圖分布時(shí),符合題意,本選項(xiàng)不符合題意.C、沒(méi)有符合題意的幾何圖形,本選項(xiàng)符合題意.D、當(dāng)7個(gè)小正方體如圖分布時(shí),符合題意,本選項(xiàng)不符合題意.故選:C.【點(diǎn)睛】此題考查了從不同的方向觀察物體和幾何體,鍛煉了學(xué)生的空間想象力和抽象思維能力.4、C【分析】根據(jù)中心對(duì)稱圖形的定義進(jìn)行逐一判斷即可.【詳解】解:A、不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;B、不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;C、是中心對(duì)稱圖形,故此選項(xiàng)符合題意;D、不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;故選C.【點(diǎn)睛】本題主要考查了中心對(duì)稱圖形的識(shí)別,解題的關(guān)鍵在于能夠熟練掌握中心對(duì)稱圖形的定義:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心.5、C【解析】【分析】根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的概念,對(duì)各選項(xiàng)分析判斷即可得解.【詳解】解:A.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故本選項(xiàng)不符合題意;B.既不是軸對(duì)稱圖形,又不是中心對(duì)稱圖形,故本選項(xiàng)不符合題意;C.既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,故本選項(xiàng)符合題意;D.不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故本選項(xiàng)不符合題意.故選:C.【考點(diǎn)】本題考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念,軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合.二、多選題1、ACD【解析】【分析】連接OA,BE,根據(jù)PA、PB是⊙O的切線,可得PA=PB,OA=OB,可得OP是AB的垂直平分線,根據(jù)垂徑定理,進(jìn)而可以判斷A;根據(jù)OB=OC,AF=BF,可得OF是三角形BAC的中位線,進(jìn)而即可判斷D;證明∠PBE=∠EBA,∠APE=∠BPE,即可判斷C;根據(jù)AC∥OE,可得△CDA∽△EDF,進(jìn)而可以判斷B.【詳解】如圖,連接OA,BE,∵PA、PB是⊙O的切線,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分線,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正確;∵BC是⊙O的直徑,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正確;∵PB是⊙O的切線,∴∠PBE+∠EBC=90°,∵BC是⊙O的直徑,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的內(nèi)心;故C正確;∵AC∥OE,∴△CDA∽△EDF.故B錯(cuò)誤;∴結(jié)論正確的是A,C,D.故選:ACD.【考點(diǎn)】此題考查了圓周角定理、切線的性質(zhì)、三角形中位線定理、及勾股定理的知識(shí),解答本題的關(guān)鍵是熟練掌握切線的性質(zhì)及圓周角定理,注意各個(gè)知識(shí)點(diǎn)之間的融會(huì)貫通.2、ABD【解析】【分析】利用k的值,分別代入求出方程的根的情況即可.【詳解】關(guān)于的方程,A當(dāng)k=0時(shí),x-1=0,則x=1,故此選項(xiàng)錯(cuò)誤,符合題意;B當(dāng)k=1時(shí),-1=0,x=±1,方程有兩個(gè)不相等的實(shí)數(shù)解,故此選項(xiàng)錯(cuò)誤,符合題意;C當(dāng)k=-1時(shí),,則,,此時(shí)方程有兩個(gè)相等的實(shí)數(shù)根,故此選項(xiàng)正確,不符合題意;D當(dāng)時(shí),根據(jù)A選項(xiàng),若k=0,此時(shí)方程有一個(gè)實(shí)數(shù)根,故此選項(xiàng)錯(cuò)誤,符合題意,故選:ABD.【考點(diǎn)】此題主要考查了一元二次方程的解,代入k的值判斷方程根的情況是解題關(guān)鍵.3、ABC【解析】【分析】證明△AOE是等邊三角形,EF⊥OA,AD⊥OE,可判斷A;.證明∠AGF=∠AOF=60°,可判斷B;證明FG=2GE,可判斷C;證明EF=AF,可判斷D.【詳解】解:如圖,在正六邊形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等邊三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四邊形AEOF,四邊形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的內(nèi)心與外心都是點(diǎn)G,故A正確,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正確,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴點(diǎn)G是線段EF的三等分點(diǎn),故C正確,∵AF=AE,∠FAE=120°,∴EF=AF,故D錯(cuò)誤,故答案為:ABC.【考點(diǎn)】本題考查作圖-復(fù)雜作圖,等邊三角形的判定和性質(zhì),菱形的判定和性質(zhì),三角形的內(nèi)心,外心等知識(shí),解題的關(guān)鍵是證明四邊形AEOF,四邊形AODE都是菱形.4、ABD【解析】【分析】結(jié)合圖象,根據(jù)二次函數(shù)的性質(zhì)進(jìn)行判斷即可求解【詳解】∵拋物線開(kāi)口向下,∴a<0,將(-1,0)代入拋物線方程,可得:4a+k=0,∵4a+k=0,∴k=-4a,∴k+a=-3a,∵a<0,∴k+a=-3a>0,即B選項(xiàng)正確;將k=-4a代入拋物線方程,可得:拋物線方程為:,當(dāng)y=0時(shí),方程的根為-1和3,∴拋物線與x軸的另一個(gè)交點(diǎn)為(3,0),即A項(xiàng)正確;將點(diǎn)(-3,m)代入到拋物線方程,可得m=12a,∵結(jié)合k=-4a,∴方程,化簡(jiǎn)為:,∵a<0,∴,即,顯然方程無(wú)實(shí)數(shù)解,故C項(xiàng)說(shuō)法錯(cuò)誤;向左平移3個(gè)單位,依據(jù)左加右減原則,可得新拋物線為:,即D說(shuō)法正確,故選:ABD.【考點(diǎn)】本題考查了拋物線的性質(zhì)與圖象的知識(shí),解答本題時(shí)需注重運(yùn)用數(shù)形結(jié)合的思想.5、ACD【解析】【分析】延長(zhǎng)ED交⊙O于N,連接OD,并延長(zhǎng)交⊙O于M,根據(jù)已知條件知的度數(shù)是80°,根據(jù)點(diǎn)D為弦AC的中點(diǎn)得出,求出、的度數(shù)=40°,即可求出40°<的度數(shù)<80°,再得出答案即可.【詳解】解:延長(zhǎng)ED交⊙O于N,連接OD,并延長(zhǎng)交⊙O于M,∵∠AOC=80°,∴的度數(shù)是80°,∵點(diǎn)D為弦AC的中點(diǎn),OA=OC,∴∠AOD=∠COD,∴,即M為的中點(diǎn),∴、的度數(shù)都是×80°=40°,∵>,∴40°<的度數(shù)<80°,∴20°<∠CED<40°,∴選項(xiàng)ACD符合題意;選項(xiàng)B不符合題意;故選:ACD.【考點(diǎn)】本題考查了圓心角、弧、弦之間的關(guān)系,圓周角定理,等腰三角形的性質(zhì)等知識(shí)點(diǎn),能求出的范圍是解此題的關(guān)鍵.三、填空題1、1【解析】【分析】由矩形的性質(zhì)可知BD=AC,再結(jié)合頂點(diǎn)到x軸的距離最近可知當(dāng)點(diǎn)A在頂點(diǎn)處時(shí)滿足條件,求得拋物線的頂點(diǎn)坐標(biāo)即可求得答案.【詳解】解:∵AC⊥x軸,∴當(dāng)點(diǎn)A為拋物線頂點(diǎn)時(shí),AC有最小值,∵拋物線y=x2﹣2x+2=(x?1)2+1,∴頂點(diǎn)坐標(biāo)為(1,1),∴AC的最小值為1,∵四邊形ABCD為矩形,∴BD=AC,∴BD的最小值為1,故答案為:1.【考點(diǎn)】本題主要考查了二次函數(shù)的性質(zhì)及矩形的性質(zhì),確定出AC最小時(shí)的位置是解題的關(guān)鍵.2、24【解析】【分析】利用因式分解法解方程得到x1=3,x2=5,再根據(jù)菱形的性質(zhì)得到菱形的邊長(zhǎng)為5,利用勾股定理計(jì)算出菱形的另一條對(duì)角線長(zhǎng),然后根據(jù)菱形的面積公式計(jì)算.【詳解】解:x2-8x+15=0,(x-3)(x-5)=0,x-3=0或x-5=0,∴x1=3,x2=5,∵菱形一條對(duì)角線長(zhǎng)為8,∴菱形的邊長(zhǎng)為5,∵菱形的另一條對(duì)角線長(zhǎng)=2×=6,∴菱形的面積=×6×8=24.故答案為:24.【考點(diǎn)】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡(jiǎn)便易用,是解一元二次方程最常用的方法.也考查了菱形的性質(zhì).3、【解析】【分析】由拋物線的圖像與軸有交點(diǎn)可知,從而可求得的取值范圍.【詳解】解:∵拋物線的圖像與軸有交點(diǎn)∴令,有,即該方程有實(shí)數(shù)根∴∴.故答案是:【考點(diǎn)】本題考查了二次函數(shù)與軸的交點(diǎn)情況與一元二次方程分的情況的關(guān)系、解一元一次不等式,能由已知條件列出關(guān)于的不等式是解題的關(guān)鍵.4、2【分析】連接OC,利用半徑相等以及三角形的外角性質(zhì)求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性質(zhì)即可求解.【詳解】解:連接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案為:2.【點(diǎn)睛】本題考查了垂徑定理和含30°角的直角三角形的性質(zhì).熟練掌握垂徑定理是解題的關(guān)鍵.5、55°##55度【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=180°,再求出答案即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=180°-125°=55°,故答案為:55°.【考點(diǎn)】本題考查了圓內(nèi)接四邊形的性質(zhì)和圓周角定理,能熟記圓內(nèi)接四邊形的對(duì)角互補(bǔ)是解此題的關(guān)鍵.四、簡(jiǎn)答題1、見(jiàn)解析【解析】【分析】方法1:過(guò)點(diǎn)A作于點(diǎn)D,根據(jù),可得,由此可得,由此可得結(jié)論;方法2:過(guò)點(diǎn)A作于點(diǎn)D,根據(jù)可得,由此可表示三角形的面積,根據(jù)面積相等可得相應(yīng)等式,由此可得結(jié)論;方法3:作的外接圓,設(shè)的半徑為r,作直徑BD,連接CD,根據(jù)圓周角定理可得,由此可得結(jié)論.【詳解】解:方法1如圖所示,過(guò)點(diǎn)A作于點(diǎn)D,則,在中,,∴,在中,,∴,∴,∴.同理可證,.∴.方法2如圖所示,過(guò)點(diǎn)A作于點(diǎn)D,則,在中,在中,,∴,∴,同理可得,∴,∴,∴,∴.方法3如圖所示,作的外接圓,設(shè)的半徑為r,作直徑BD,連接CD.∵BD是的直徑,∴.∴,∴,同理可得,.∴.2、32米【解析】【分析】設(shè)關(guān)于的對(duì)稱點(diǎn)為,根據(jù)光線的反射可知,延長(zhǎng)、相交于點(diǎn),連接并延長(zhǎng)交于點(diǎn),先根據(jù)鏡面反射的基本性質(zhì),得出,再運(yùn)用相似三角形對(duì)應(yīng)邊成比例即可解答.【詳解】設(shè)關(guān)于的對(duì)稱點(diǎn)為,根據(jù)光線的反射可知,延長(zhǎng)、相交于點(diǎn),連接并延長(zhǎng)交于點(diǎn),由題意可知且、∴∴∴即:∴∴答:樓的高度為米.【考點(diǎn)】本題考查了相似三角形的應(yīng)用、鏡面反射的基本性質(zhì),準(zhǔn)確作出輔助線是關(guān)鍵.五、解答題1、(1);(2);(3)【解析】【分析】(1)由拋物線的對(duì)稱軸為直線,即可求得點(diǎn)E的坐標(biāo);在y=ax2﹣3ax﹣4a(a<0)令y=0可得關(guān)于x的方程ax2﹣3ax﹣4a=0,解方程即可求得點(diǎn)A的坐標(biāo);(2)如圖1,設(shè)⊙E與直線BC相切于點(diǎn)D,連接DE,則DE⊥BC,結(jié)合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,這樣由tan∠OBC=即可列出關(guān)于a的方程,解方程求得a的值即可得到拋物線的解析式;(3)由折疊的性質(zhì)和MN∥y軸可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C的坐標(biāo)為(0,3)可得線段BC=5,直線BC的解析式為y=﹣x+3,由此即可得到M、N的坐標(biāo)分別為(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,這樣由sin∠BCO=即可解得CM=m,然后分點(diǎn)N在直線BC的上方和下方兩種情況用含m的代數(shù)式表達(dá)出MN的長(zhǎng)度,結(jié)合MN=CM即可列出關(guān)于m的方程,解方程即可求得對(duì)應(yīng)的m的值,從而得到對(duì)應(yīng)的點(diǎn)Q的坐標(biāo).【詳解】解:(1)∵對(duì)稱軸x=,∴點(diǎn)E坐標(biāo)(,0),令y=0,則有ax2﹣3ax﹣4a=0,∴x=﹣1或4,∴點(diǎn)A坐標(biāo)(﹣1,0).故答案分別為(,0),(﹣1,0).(2)如圖①中,設(shè)⊙E與直線BC相切于點(diǎn)D,連接DE,則DE⊥BC,∵DE=OE=,EB=,OC=﹣4a,∴DB=,∵tan∠OBC=,∴,解得a=,∴拋物線解析式為y=.(3)如圖②中,由題意∠M′CN=∠NCB,∵M(jìn)N∥OM′,∴∠M′CN=∠CNM,∴MN=CM,∵點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C的坐標(biāo)為(0,3),∴直線BC解析式為y=﹣x+3,BC=5,∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OC于F,∵sin∠BCO=,∴,∴CM=m,①當(dāng)N在直線BC上方時(shí),﹣x2+x+3﹣(﹣x+3)=m,解得:m=或0(舍棄),∴Q1(,0).②當(dāng)N在直線BC下方時(shí),(﹣m+3)﹣(﹣m2+m+3)=m,解得m=或0(舍棄),∴Q2(,0),綜上所述:點(diǎn)Q坐標(biāo)為(,0)或(,0).【考點(diǎn)】本題是一道二次函數(shù)與幾何及銳角三角函數(shù)綜合的題,解題的要點(diǎn)是:(1)熟悉二次函數(shù)的對(duì)稱軸方程及二次函數(shù)與一元二次方程的關(guān)系是解第1小題的關(guān)鍵;(2)由切線的性質(zhì)得到DE⊥BC,從而得到tan∠OBC=,這樣結(jié)合已知條件求出a的值是解第2小題的關(guān)鍵;(3)過(guò)點(diǎn)M作MF⊥y軸于點(diǎn)F,這樣由sin∠BCO=變形把MC用含m的代數(shù)式表達(dá)出來(lái),再由折疊的性質(zhì)和MN∥y軸證得MN=MC,這樣就可分點(diǎn)N在BC的上方和下方兩種情況列出關(guān)于m的方程,解方程求得對(duì)應(yīng)的m的值是解第3小題的關(guān)鍵.2、
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 行李值班員安全生產(chǎn)知識(shí)水平考核試卷含答案
- 美甲師創(chuàng)新應(yīng)用競(jìng)賽考核試卷含答案
- 聚酰胺裝置操作工安全生產(chǎn)知識(shí)考核試卷含答案
- 電子陶瓷料制配工崗前理論實(shí)踐考核試卷含答案
- 肉制品品評(píng)師崗前實(shí)操綜合知識(shí)考核試卷含答案
- 電器附件零部件制造工誠(chéng)信知識(shí)考核試卷含答案
- 礦井制冷降溫工改進(jìn)競(jìng)賽考核試卷含答案
- 長(zhǎng)期照護(hù)師崗前安全生產(chǎn)基礎(chǔ)知識(shí)考核試卷含答案
- 脂肪烴生產(chǎn)工安全文明考核試卷含答案
- 羽毛球拍制作工崗前技術(shù)水平考核試卷含答案
- 俄語(yǔ)口語(yǔ)課件
- django基于Hadoop的黑龍江旅游景點(diǎn)系統(tǒng)-論文11936字
- 2025-2026學(xué)年廣東省深圳市福田中學(xué)高一(上)期中物理試卷(含答案)
- 2025貴州安虹航空機(jī)械有限公司招聘9人筆試考試備考試題及答案解析
- 施工現(xiàn)場(chǎng)安全、文明考核管理辦法
- 香蕉購(gòu)買(mǎi)協(xié)議書(shū)模板
- 庸懶散浮拖自檢自查報(bào)告及整改措施
- 妊娠合并肝損害的健康宣教
- 神龍公司合并協(xié)議書(shū)
- 2025廣東中山市人力資源和社會(huì)保障局招聘雇員10人考試歷年真題匯編附答案解析
- 骨盆和骨盆底解剖課件
評(píng)論
0/150
提交評(píng)論