數(shù)學(xué)蘇教七年級下冊期末解答題壓軸資料專題試題答案_第1頁
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸資料專題試題答案_第2頁
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸資料專題試題答案_第3頁
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸資料專題試題答案_第4頁
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸資料專題試題答案_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

數(shù)學(xué)蘇教七年級下冊期末解答題壓軸資料專題試題答案一、解答題1.解讀基礎(chǔ):(1)圖1形似燕尾,我們稱之為“燕尾形”,請寫出、、、之間的關(guān)系,并說明理由;(2)圖2形似8字,我們稱之為“八字形”,請寫出、、、之間的關(guān)系,并說明理由:應(yīng)用樂園:直接運用上述兩個結(jié)論解答下列各題(3)①如圖3,在中,、分別平分和,請直接寫出和的關(guān)系;②如圖4,.(4)如圖5,與的角平分線相交于點,與的角平分線相交于點,已知,,求和的度數(shù).2.(生活常識)射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等.如圖1,MN是平面鏡,若入射光線AO與水平鏡面夾角為∠1,反射光線OB與水平鏡面夾角為∠2,則∠1=∠2.(現(xiàn)象解釋)如圖2,有兩塊平面鏡OM,ON,且OM⊥ON,入射光線AB經(jīng)過兩次反射,得到反射光線CD.求證AB∥CD.(嘗試探究)如圖3,有兩塊平面鏡OM,ON,且∠MON=55,入射光線AB經(jīng)過兩次反射,得到反射光線CD,光線AB與CD相交于點E,求∠BEC的大小.(深入思考)如圖4,有兩塊平面鏡OM,ON,且∠MONα,入射光線AB經(jīng)過兩次反射,得到反射光線CD,光線AB與CD所在的直線相交于點E,∠BED=β,α與β之間滿足的等量關(guān)系是.(直接寫出結(jié)果)3.Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:;(3)若點P運動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.(4)若點P運動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關(guān)系為:.4.已知在中,,點在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數(shù);(2)如圖2,將沿射線的方向平移,當(dāng)點在上時,求度數(shù);(3)將在直線上平移,當(dāng)以為頂點的三角形是直角三角形時,直接寫出度數(shù).5.已知ABCD,點E是平面內(nèi)一點,∠CDE的角平分線與∠ABE的角平分線交于點F.(1)若點E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關(guān)系式是.(3)若點E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.6.閱讀材料:如圖1,點是直線上一點,上方的四邊形中,,延長,,探究與的數(shù)量關(guān)系,并證明.小白的想法是:“作(如圖2),通過推理可以得到,從而得出結(jié)論”.請按照小白的想法完成解答:拓展延伸:保留原題條件不變,平分,反向延長,交的平分線于點(如圖3),設(shè),請直接寫出的度數(shù)(用含的式子表示).7.已知,如圖1,射線PE分別與直線AB、CD相交于E、F兩點,∠PFD的平分線與直線AB相交于點M,射線PM交CD于點N,設(shè)∠PFM=,∠EMF=,且.(1)=____°,=______°;直線AB與CD的位置關(guān)系是_______;(2)如圖2,若點G是射線MA上任意一點,且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數(shù)量關(guān)系,并證明你的結(jié)論:(3)若將圖中的射線PM繞著端點P逆時針方向旋轉(zhuǎn)(如圖3),分別與AB、CD相交于點M和點N,時,作∠PMB的角平分線MQ與射線FM相交于點Q,問在旋轉(zhuǎn)的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.8.[原題](1)已知直線,點P為平行線AB,CD之間的一點,如圖①,若,BE平分,DE平分,則__________.[探究](2)如圖②,,當(dāng)點P在直線AB的上方時.若,和的平分線相交于點,與的平分線相交于點,與的平分線相交于點……以此類推,求的度數(shù).[變式](3)如圖③,,的平分線的反向延長線和的補角的平分線相交于點E,試猜想與的數(shù)量關(guān)系,并說明理由.9.如圖,直線MN∥GH,直線l1分別交直線MN、GH于A、B兩點,直線l2分別交直線MN、GH于C、D兩點,且直線l1、l2交于點E,點P是直線l2上不同于C、D、E點的動點.(1)如圖①,當(dāng)點P在線段CE上時,請直寫出∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系:;(2)如圖②,當(dāng)點P在線段DE上時,(1)中的∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系還成立嗎?如果成立,請說明成立的理由;如果不成立,請寫出這三個角之間的數(shù)量關(guān)系,并說明理由.(3)如果點P在直線l2上且在C、D兩點外側(cè)運動時,其他條件不變,請直接寫出∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系.10.已知:直線l分別交AB、CD與E、F兩點,且AB∥CD.(1)說明:∠1=∠2;(2)如圖2,點M、N在AB、CD之間,且在直線l左側(cè),若∠EMN+∠FNM=260°,①求:∠AEM+∠CFN的度數(shù);②如圖3,若EP平分∠AEM,F(xiàn)P平分∠CFN,求∠P的度數(shù);(3)如圖4,∠2=80°,點G在射線EB上,點H在AB上方的直線l上,點Q是平面內(nèi)一點,連接QG、QH,若∠AGQ=18°,∠FHQ=24°,直接寫出∠GQH的度數(shù).【參考答案】一、解答題1.(1),理由詳見解析;(2),理由詳見解析:(3)①;②360°;(4);.【分析】(1)根據(jù)三角形外角等于不相鄰的兩個內(nèi)角之和即可得出結(jié)論;(2)根據(jù)三角形內(nèi)角和定理及對頂角相等即可得出結(jié)解析:(1),理由詳見解析;(2),理由詳見解析:(3)①;②360°;(4);.【分析】(1)根據(jù)三角形外角等于不相鄰的兩個內(nèi)角之和即可得出結(jié)論;(2)根據(jù)三角形內(nèi)角和定理及對頂角相等即可得出結(jié)論;(3)①根據(jù)角平分線的定義及三角形內(nèi)角和定理即可得出結(jié)論;②連結(jié)BE,由(2)的結(jié)論及四邊形內(nèi)角和為360°即可得出結(jié)論;(4)根據(jù)(1)的結(jié)論、角平分線的性質(zhì)以及三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1).理由如下:如圖1,,,,;(2).理由如下:在中,,在中,,,;(3)①,,、分別平分和,,.故答案為:.②連結(jié).∵,.故答案為:;(4)由(1)知,,,,,,,,,,,;.【點睛】本題考查了角平分線的性質(zhì),三角形內(nèi)角和;熟練掌握角平分線的性質(zhì),進(jìn)行合理的等量代換是解題的關(guān)鍵.2.【現(xiàn)象解釋】見解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現(xiàn)象解釋]根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【現(xiàn)象解釋】見解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現(xiàn)象解釋]根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可證得AB∥CD;[嘗試探究]根據(jù)三角形內(nèi)角和定理求得∠2+∠3=125°,根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用平角的定義得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根據(jù)三角形內(nèi)角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定義得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性質(zhì)∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可證得β=2α.【詳解】[現(xiàn)象解釋]如圖2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【嘗試探究】如圖3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如圖4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【點睛】本題考查了平行線的判定,三角形外角的性質(zhì)以及三角形內(nèi)角和定理,熟練掌握三角形的性質(zhì)是解題的關(guān)鍵.3.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補角的定義,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補角的定義,得出∠1+∠2=∠C+∠α,進(jìn)而得出即可;(2)利用(1)中所求的結(jié)論得出∠α、∠1、∠2之間的關(guān)系即可;(3)利用三角外角的性質(zhì),得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形內(nèi)角和定理以及鄰補角的性質(zhì)可得出∠α、∠1、∠2之間的關(guān)系.試題分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案為140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案為∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如圖③,設(shè)DP與BE的交點為M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如圖④,設(shè)PE與AC的交點為F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α點睛:本題考查了三角形內(nèi)角和定理和外角的性質(zhì)、對頂角相等的性質(zhì),熟練掌握三角形外角的性質(zhì)是解決問題的關(guān)鍵.4.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁內(nèi)角互補,得出,即可得出結(jié)論;(2)先利用三角形的內(nèi)角和定理求出,即可得出結(jié)論;(3)分和兩種情況求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁內(nèi)角互補,得出,即可得出結(jié)論;(2)先利用三角形的內(nèi)角和定理求出,即可得出結(jié)論;(3)分和兩種情況求解即可得出結(jié)論.【詳解】解:(1),,,,,;(2)由(1)知,,,,,;(3)當(dāng)時,如圖3,由(1)知,,;當(dāng)時,如圖4,,點,重合,,,由(1)知,,,即當(dāng)以、、為頂點的三角形是直角三角形時,度數(shù)為或.【點睛】此題是三角形綜合題,主要考查了平行線的性質(zhì),三角形的內(nèi)角和定理,角的和差的計算,求出是解本題的關(guān)鍵.5.(1)①70;②∠F=∠BED,證明見解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F=∠BED,證明見解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分線的定義得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分別過E、F作EN//AB,F(xiàn)M//AB,利用平行線的判定和性質(zhì)得到∠BED=∠ABE+∠CDE,利用角平分線的定義得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合①的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系;(3)通過對的計算求得,利用角平分線的定義以及三角形外角的性質(zhì)求得,即可求得.【詳解】(1)①過F作FG//AB,如圖:∵AB∥CD,F(xiàn)G∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案為:70;②∠F=∠BED,理由是:分別過E、F作EN//AB,F(xiàn)M//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分別是∠CDE的角平分線與∠ABE的角平分線,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如圖,過點E作EG∥AB,則∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如圖,∵∠CDE為銳角,DF是∠CDE的角平分線,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案為:.【點睛】本題考查了平行線的性質(zhì)、角平分線的定義以及三角形外角性質(zhì)的應(yīng)用,在解答此題時要注意作出輔助線,構(gòu)造出平行線求解.6.閱讀材料:,見解析;拓展延伸:.【分析】(1)作,,,由平行線性質(zhì)可得,結(jié)合已知,可證,進(jìn)而得到,從而,,將代入可得.(2)過H點作HP∥MN,可得∠CHA=∠PHA+∠PHC,結(jié)合(1)的結(jié)解析:閱讀材料:,見解析;拓展延伸:.【分析】(1)作,,,由平行線性質(zhì)可得,結(jié)合已知,可證,進(jìn)而得到,從而,,將代入可得.(2)過H點作HP∥MN,可得∠CHA=∠PHA+∠PHC,結(jié)合(1)的結(jié)論和CG平分∠ECD可得∠PHC=∠FCH=120°-,即可得.【詳解】解:【閱讀材料】作,,(如圖1).∵,∴.∴.∵,∴.∴.∴.∵,∴.∵,∴.∴,.∴.∵,∴.【拓展延伸】結(jié)論:.理由:如圖,作,過H點作HP∥MN,∴∠PHA=∠MAH=,由(1)得FC∥MN,∴FC∥HP,∴∠PHC=∠FCH,∵,CG平分∠ECD,∴∠ECG=20°+,∴∠FCH==180°-()-(20°+)=120°-∴∠CHA=∠PHA+∠PHC=+(120°-)=120°-即:.【點評】本題主要考查了平行線的性質(zhì)的運用,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯角,運用等角的余角(補角)相等進(jìn)行推導(dǎo).余角和補角計算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時注意方程思想的運用.7.(1)35;35;AB∥CD;(2)∠FMN+∠GHF=180°.證明見解析;(3)的值不變,=2.【分析】(1)利用非負(fù)數(shù)的性質(zhì)可知:==35,推出即可解決問題;(2)結(jié)論,只要證明即可解決解析:(1)35;35;AB∥CD;(2)∠FMN+∠GHF=180°.證明見解析;(3)的值不變,=2.【分析】(1)利用非負(fù)數(shù)的性質(zhì)可知:==35,推出即可解決問題;(2)結(jié)論,只要證明即可解決問題;(3)結(jié)論:的值不變,=2.如圖3中,作∠PEM1的平分線交M1Q的延長線于R,只要證明∠R=∠,∠=2∠R即可;【詳解】(1)證明:∵,∴==35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;故答案為:35;35;AB∥CD;(2)解:∠FMN+∠GHF=180°.理由:∵AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°.(3)解:的值不變,=2.理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R.∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠=∠R,設(shè)∠PER=∠REB=,,則有:,可得∠=2∠R,∴∠=2∠∴=2.【點睛】本題考查幾何變換綜合題、平行線的判定和性質(zhì)、角平分線的定義、非負(fù)數(shù)的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會添加常用輔助線,構(gòu)造平行線解決問題,屬于中考壓軸題.8.(1);(2);(3),理由見解析【分析】(1)過作,依據(jù)平行線的性質(zhì),即可得到,依據(jù)角平分線即可得出的度數(shù);(2)依據(jù)平行線的性質(zhì)以及三角形外角性質(zhì),求得,,,以此類推的度數(shù)為;(3)過作解析:(1);(2);(3),理由見解析【分析】(1)過作,依據(jù)平行線的性質(zhì),即可得到,依據(jù)角平分線即可得出的度數(shù);(2)依據(jù)平行線的性質(zhì)以及三角形外角性質(zhì),求得,,,以此類推的度數(shù)為;(3)過作,進(jìn)而得出,再根據(jù)平行線的性質(zhì)以及三角形外角性質(zhì),即可得到【詳解】解:(1)如圖1,過作,而,,,,,又,,平分,平分,,,,故答案為:;(2)如圖2,和的平分線交于點,,,,,,與的角平分線交于點,,,,,,同理可得,,以此類推,的度數(shù)為.(3).理由如下:如圖3,過作,而,,,,,又的角平分線的反向延長線和的補角的角平分線交于點,,,,,,.【點睛】本題考查了平行線性質(zhì)以及三角形外角性質(zhì)的應(yīng)用,在解答此題時要注意作出輔助線,構(gòu)造出平行線求解.9.(1)∠APB=∠NAP+∠HBP;(2)見解析;(3)∠HBP=∠NAP+∠APB【分析】(1)過P點作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(2)過P點作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解析:(1)∠APB=∠NAP+∠HBP;(2)見解析;(3)∠HBP=∠NAP+∠APB【分析】(1)過P點作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(2)過P點作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(3)根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)即可求解.【詳解】解:(1)如圖①,過P點作PQ∥GH

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論